

Management of Drug-resistant epilepsy (DRE)

Sattawut Wongwiangjunt, M.D.

Division of Neurology, Department of Medicine Siriraj Hospital, Mahidol University

Epilepsy Care

Seizure

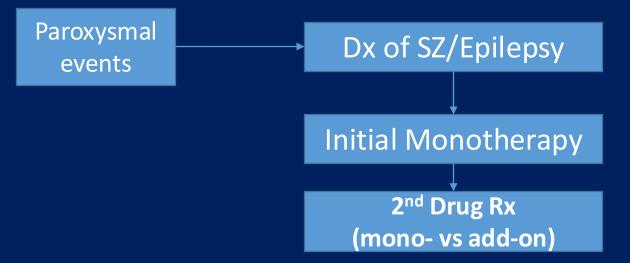
Epilepsy diagnosis

Medication trials

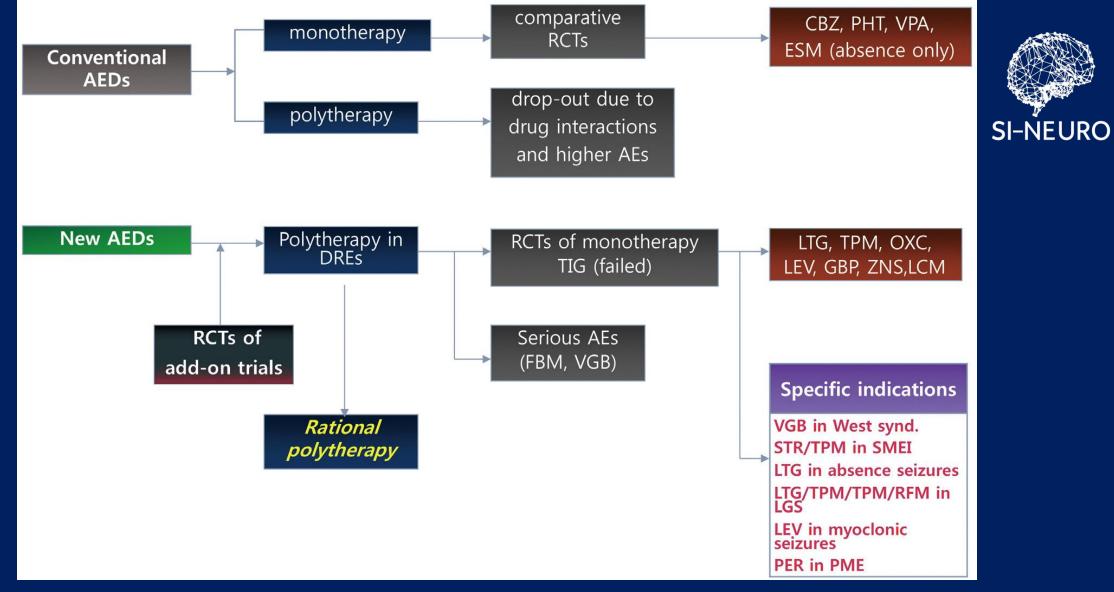
Imaging for pathology

Medical intractability

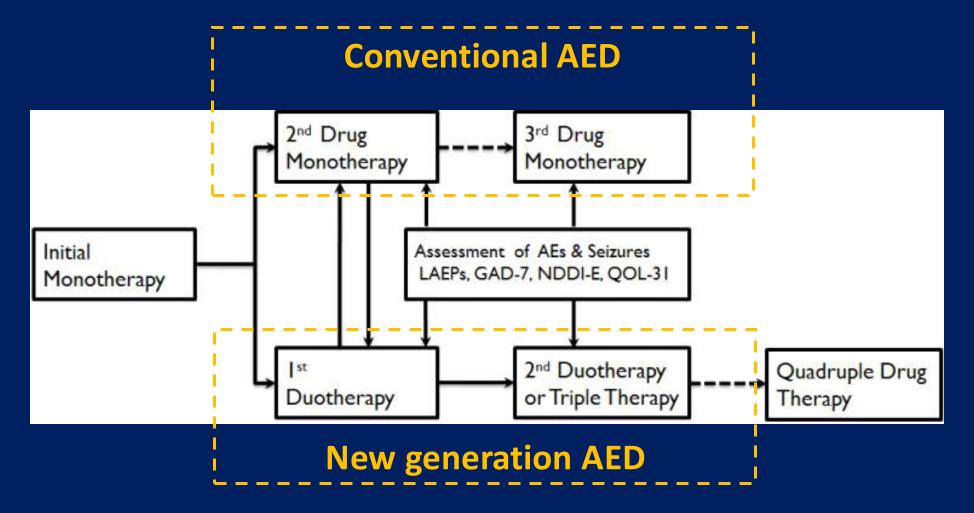
Surgical Consideration


Surgical workup

Not surgery


Pathway of epilepsy management

Remission (50%)


Additional Remission (15-20%)

Lee BI, et al. Epilepsy Research 2019; 106-5

Sequential AED trials epilepsy

Park KM, et al. J of Epilepsy Research 2019;9:14-26

3rd gen AEDs

Old	Newer (2 nd gen)	Newest (3 rd gen)
Phenobarbital 1919	Felbamate 1993	Pregabalin 2005
Phenytoin 1938	Gabapentin 1993	Rufinamide 2009
Primidone 1954	Lamotrigine 1994	Lacosamide 2009
Ethosuximide 1960	Topiramate 1996	Vigabatrin 2009
Carbamazepine 1974	Tiagabine 1997	Clobazam 2011
Valproic acid 1978	Levetiracetam 1999	Ezogabine 2011
	Oxcarbazepine 2000	Perampanel 2012
	Zonisamide 2000	Eslicarbazepine 2014

Pattern of treatment response

Table 1	Seizure-free rates with successive antiepileptic drug regimens							
Drug regimens	No. of patients	% Seizure-free on regimen						
First	1,098	543	0	543	49.5	49.5		
Second	398	101	45	146	13.3	36.7		
Third	168	26	15	41	3.7	24.4		
Fourth	68	6	5	11	1.0	16.2		
Fifth	32	1	3	4	0.4	12.5		
Sixth	16	1	1	2	0.2	12.5		
Seventh	9	1	1	2	0.2	22.2		
Eighth	3	0	0	0	0.0	0.0		
Ninth	2	0	0	0	0.0	0.0		

SZ freedom does not differ substantially whether an established or a new-generation AED is used.

SPECIAL REPORT

Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies

*\Patrick Kwan, \†Alexis Arzimanoglou, \‡Anne T. Berg, \§Martin J. Brodie, \\$W. Allen Hauser, $\#^2$ Gary Mathern, **Solomon L. Moshé, \†Emilio Perucca, \‡\\$Samuel Wiebe, and \§\§^2Jacqueline French

"Drug-resistant or Medically intractable epilepsy"

 "a failure of adequate trials of 2 tolerated, appropriately chosen and used anticonvulsant drug schedules (whether as monotherapy or in combination) to achieve sustained seizure freedom."

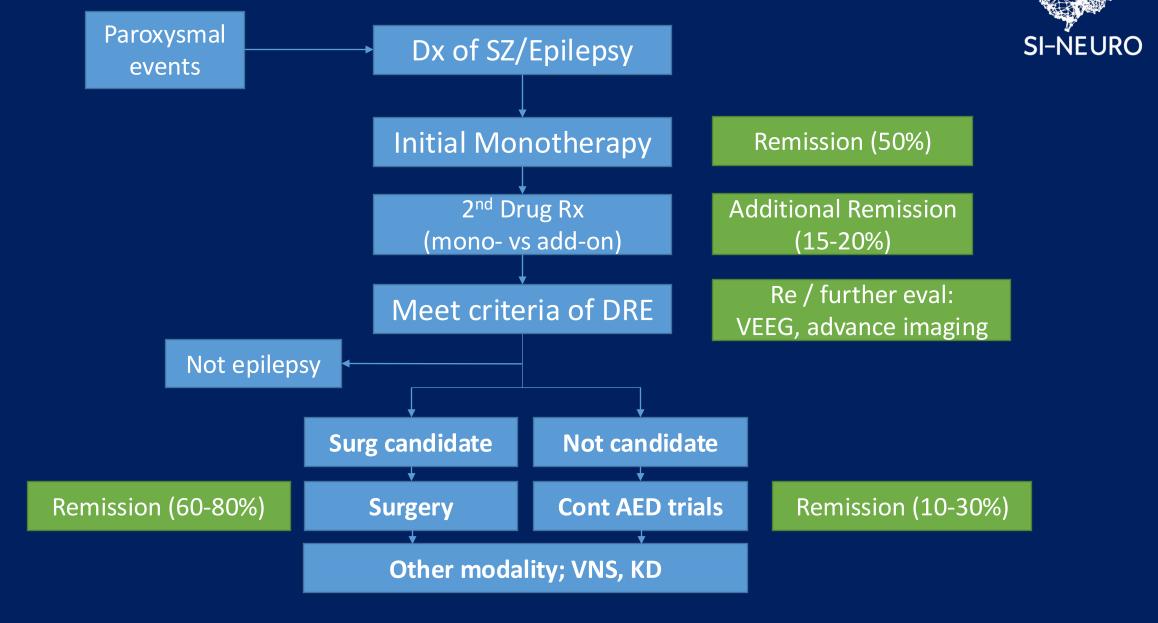
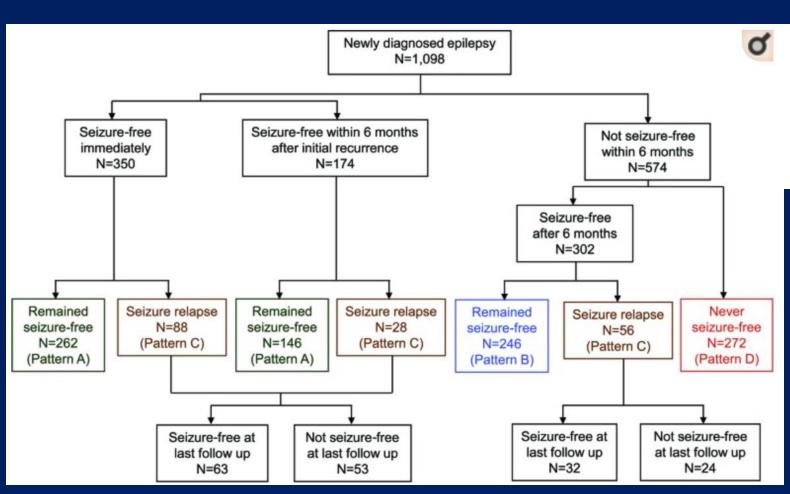
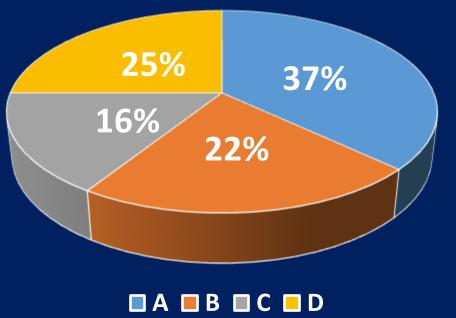

Exclude pseudoresistance

Table 1. Some Reasons for Pseudoresistance to Antiepileptic Drug Therapy.


Reason	Examples
Wrong diagnosis	Syncope, cardiac arrhythmia, or other conditions; psychogenic nonepileptic seizures
Wrong drug (or drugs)	Inappropriate for seizure type; pharmaco- kinetic or pharmacodynamic interactions
Wrong dose	Too low (overreliance on "therapeutic" blood levels); side effects preventing drug increase
Lifestyle issues	Poor compliance with medication; alcohol or drug abuse

Pathway of epilepsy management

Pattern of treatment response



Pattern A: Early and sustained

Pattern B: Delayed and sustained

Pattern C: Fluctuating course

Pattern D: Never SZ-free

SZ freedom rate after newly added ASM

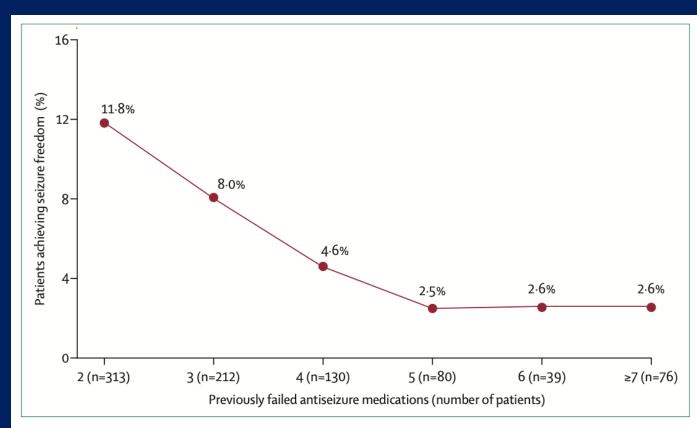


Figure 1: Seizure freedom rates after a newly added antiseizure medication, by number of previously tried antiseizure medications

- 850 DRE focal epilepsy
- Study participants were followed up prospectively over 18 months (max 34 months) after the introduction of another ASM into their regimen.

Rational polytherapy

- 1st AED fails due to lack of tolerability → 2nd mono
- •1st AED fails due to inefficiency
 - →Add-on (partially effective from 1st AED)
 - \rightarrow 2nd mono (totally ineffective from 1st AED)
- 2nd mono should be considered in
 - OElder, women w/ child bearing age
 - Compliance challenging
 - Cost

Add-on: consider different MOA and co-morbidity

Rational Combination of AEDs

Recommend

- : Na-Channel blocker + GABAergic
- : Na-Channel blocker + multiple mechanism AED
- : Valproate + Lamotrigine

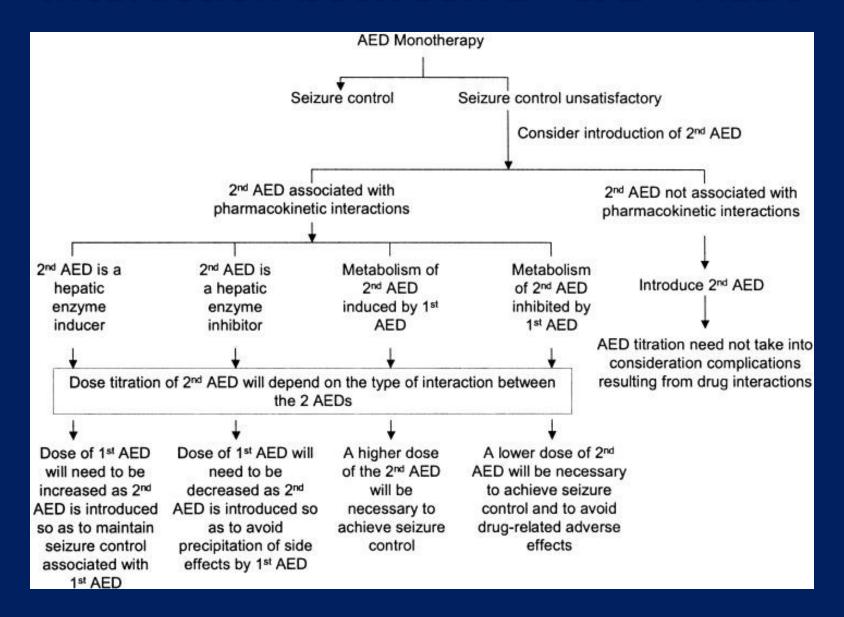
Not recommend

- : Na-Channel blocker + Na-Channel blocker
- → more neurotoxic side-effects; dizziness, diplopia and ataxia

Synergistic combination regimen

Combination regimen	LOE	Remarks
VPA + LTG	+++	
VPA + ETX	++	In absence
LTG + TPM	+	
LCS + LEV	++	
LTG + LEV	++	
VPA + LEV	+	
VPA + clobazam + stiripentol	+++	In Dravet syndrome
VPA + LTG + BZP	++	In epileptic encephalopathy

```
+++ controlled trials
++ case series or observational studies
+ case reports
```


Guidance for combining AEDs

- 1. Establish optimal dose of baseline agent
- 2. Add drug with multiple mechanisms
- 3. Avoid combining similar MOA
- 4. Titrate new agent slowly and carefully
- 5. Be prepared to reduce dose of original drug
- 6. Replace less effective drug if response still poor
- 7. Try range of different duo therapies
- 8. Add 3rd drug if still suboptimum

Interaction between 1st & 2nd AEDs

Expected changes in plasma concentration when new AED

Fffe	ct of					lucer												
					nz inł	<u>nibitor</u>	•											
On		PB♦	PHT [♦]	PRM [♦]	ESM	CBZ♦	VPA^{\square}	FBM^\square	VGB	GBP	LTG	TPM♦	TGB	OXC♦	LEV	PGB	ZNS	LCS
	PB	-	1	-	-	-	\uparrow	\uparrow	\downarrow	-	-	-	-	↑	-	-	-	-
	PHT	$\uparrow\downarrow$	-	$\uparrow \downarrow$	-	$\uparrow\downarrow$	-	\uparrow	\downarrow	-	-	1	-	↑	-	-	-	-
	PRM	\downarrow	\downarrow	-	-	\downarrow	1	-	\downarrow	-	-	-	-	-	-	-	-	-
	ESM	\downarrow	\downarrow	\downarrow	-	\downarrow	1	-	-	-	-	-	-	-	-	-	-	-
	CBZ	\downarrow	\downarrow	\downarrow	-	-	1	\downarrow	↑	-	-	-	-	\downarrow	-	-	↑	-
	VPA	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	-	\uparrow	-	-	-	\downarrow	-	-	-	-	-	-
	FBM	\downarrow	\downarrow	\downarrow	-	\downarrow	1	-	-	-	-	-	-	-	-	-	-	-
	VGB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	GBP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	LTG	\downarrow	\downarrow	\downarrow	-	\downarrow	\uparrow	-	-	-	-	-	-	\downarrow	-	-	-	-
	TPM	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow	-	-	-	-	-	-	-	-	-	-	-
	TGB	\downarrow	\downarrow	\downarrow	-	\downarrow	-	-	-	-	-	-	-	-	-	-	-	-
	OXC	\downarrow	\downarrow	\downarrow	-	\downarrow	-	-	-	-	-	-	-	-	-	-	-	-
	LEV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PGB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ZNS	\downarrow	\downarrow	\downarrow	-	\downarrow	-	-	-	-	-	-	-	-	-	-	-	-
	LCS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	OC	\downarrow	\downarrow	\downarrow	-	\downarrow	-	\downarrow	-	-	-	\downarrow	-	\downarrow	-	-	\downarrow	-

Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs I: Treatment of new-onset epilepsy

Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society

Andres M. Kanner, MD, Eric Ashman, MD, David Gloss, MD, MPH&TM, Cynthia Harden, MD, Blaise Bourgeois, MD, Jocelyn F. Bautista, MD, Bassel Abou-Khalil, MD, Evren Burakgazi-Dalkilic, MD, Esmeralda Llanas Park, MD, John Stern, MD, Deborah Hirtz, MD, Mark Nespeca, MD, Barry Gidal, PharmD, Edward Faught, MD, and Jacqueline French, MD

Correspondence

American Academy of Neurology guidelines@aan.com

Neurology® 2018;91:74-81. doi:10.1212/WNL.000000000005755

Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs II:

Treatment-resistant epilepsy

Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society

Andres M. Kanner, MD, Eric Ashman, MD, David Gloss, MD, MPH&TM, Cynthia Harden, MD, Blaise Bourgeois, MD, Jocelyn F. Bautista, MD, Bassel Abou-Khalil, MD, Evren Burakgazi-Dalkilic, MD, Esmeralda Llanas Park, MD, John Stern, MD, Deborah Hirtz, MD, Mark Nespeca, MD, Barry Gidal, PharmD, Edward Faught, MD, and Jacqueline French, MD

Correspondence

American Academy of Neurology guidelines@aan.com

Neurology® 2018;91:82-90. doi:10.1212/WNL.000000000005756

Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs I: Treatment of new-onset epilepsy

Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society

Andres M. Kanner, MD, Eric Ashman, MD, David Gloss, MD, MPH&TM, Cynthia Harden, MD, Blaise Bourgeois, MD, Jocelyn F. Bautista, MD, Bassel Abou-Khalil, MD, Evren Burakgazi-Dalkilic, MD, Esmeralda Llanas Park, MD, John Stern, MD, Deborah Hirtz, MD, Mark Nespeca, MD, Barry Gidal, PharmD, Edward Faught, MD, and Jacqueline French, MD

Correspondence

American Academy of Neurology guidelines@aan.com

Neurology® 2018;91:74-81. doi:10.1212/WNL.000000000005755

1. New-onset focal epilepsy:

- LTG (level B), LEV & ZNS (level C) are recommended
- 2. New-onset focal epilepsy (>60yo):
 - LTG (level B), GBP (level C)
- 3. Absence epilepsy:
 - VPA > LTG

Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs II: Treatment-resistant epilepsy

Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society

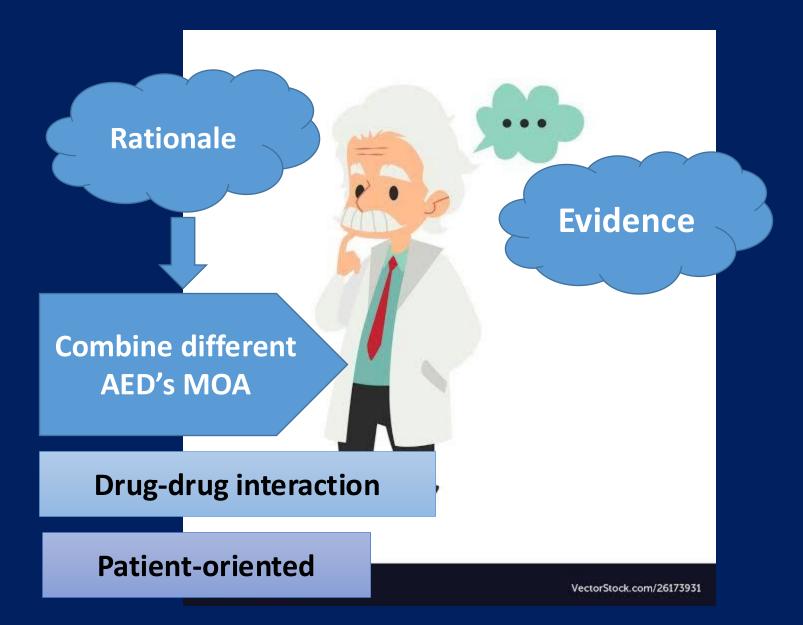
Andres M. Kanner, MD, Eric Ashman, MD, David Gloss, MD, MPH&TM, Cynthia Harden, MD, Blaise Bourgeois, MD, Jocelyn F. Bautista, MD, Bassel Abou-Khalil, MD, Evren Burakgazi-Dalkilic, MD, Esmeralda Llanas Park, MD, John Stern, MD, Deborah Hirtz, MD, Mark Nespeca, MD, Barry Gidal, PharmD, Edward Faught, MD, and Jacqueline French, MD

Correspondence American Academy of

Neurology guidelines@aan.com

Neurology® 2018;91:82-90. doi:10.1212/WNL.000000000005756

Effective to reduce seizure frequency in focal epilepsy


Level A: PER and IR PGB

Level B: LCS, ESL, and TPM XR

Level C: CLB and OXC-XR

Rationale polytherapy

Patient-oriented: To choose, To avoid

Co-morbidity	Choose	Avoid	IEURO
Obesity	TPM, ZNS	VPA, PGB, GBP, PER	
Migraine	TPM, VPA, ZNS, PGB, GBP		
Skin rash	LEV, GBP, PGB, TPM, VPA, PER, LCM	LTG, OXC, CBZ, PHT, PB	
Neuropathic pain	PGB, GBP, CBZ, OXC, PHT		
Depression +/- Behav/Psych	LTG, CBZ, OXC, VPA, PGB	LEV, PV, PRM, TPM, ZNS, PER	
Cognitive dysfn	LTG, LEV, OXC	PB, TPM, ZNS	
Concomitant drugs	GBP, LEV, PGB, VPA	El-drugs	
Osteoporosis	LTG, LEV	El-drugs, TPM, VPA, ZNS	
Tremor	TPM, PER	VPA	

Patient-oriented: To choose, To avoid

Co-morbidity	Choose	Avoid
Restless legs syndrome	GBP, PGB, CZP	
Renal stone		TPM, ZNS
Glaucoma		TPM
Hematological disorder		CBZ, VPA
Hyponatremia		OXC, ESL, CBZ
Hepatic disease	New AEDs	VPA
Renal disease	Old AEDs	
Cardiac arrhythmia		CBZ, LTG, LCM, PHT
Cancer	VPA, LEV, PER	El-drugs
Heat stroke		TPM, ZNS

Epilepsy Care

Seizure

Epilepsy diagnosis

Medication trials

Imaging for pathology

Medical intractability

Surgical Consideration

Surgical workup

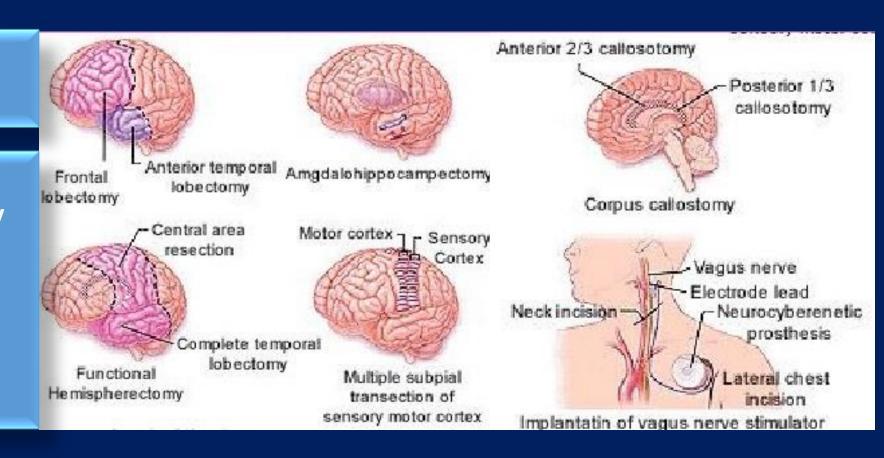
Not surgery

Treatment Alternatives for DRE:

Surgery

- Resective surgery
- Palliative surgery
- Non-resective technique

Non-Surgery


Diet
- Ketogenic diet

Type of surgical procedure

Surgery

- Resective surgery
- Palliative surgery
- Non-resective technique

Resective surgery

Resect epileptogenic zone to eliminate or reduce SZ

Without causing deficits

Indication

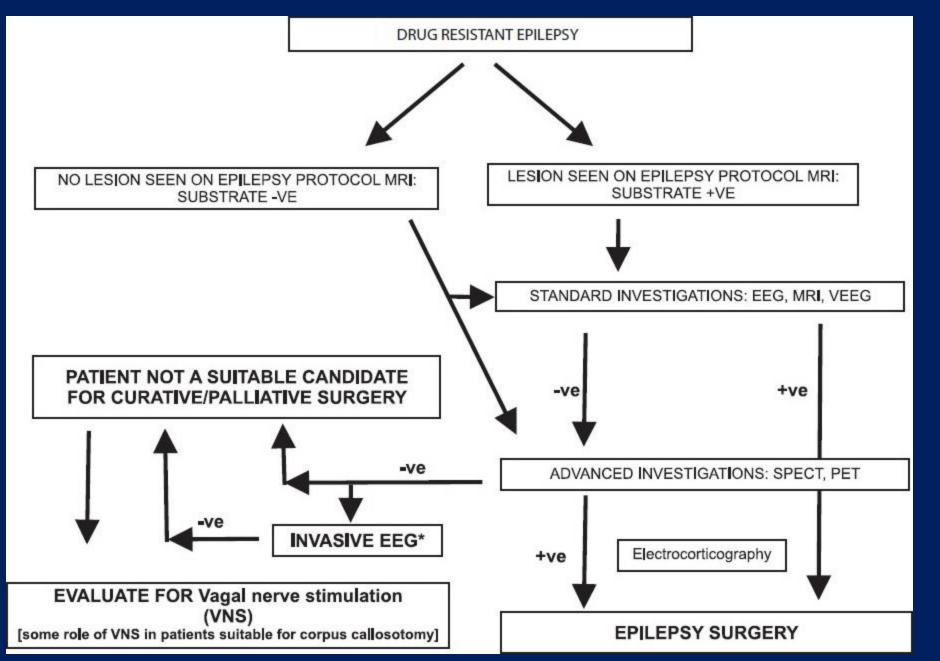
DRE with SZs that interfere daily living

The progression timeline should reach > 2 years, except in patients with life-threatening SZs or in children

Epilepsies that can be treated with surgery

Contraindication

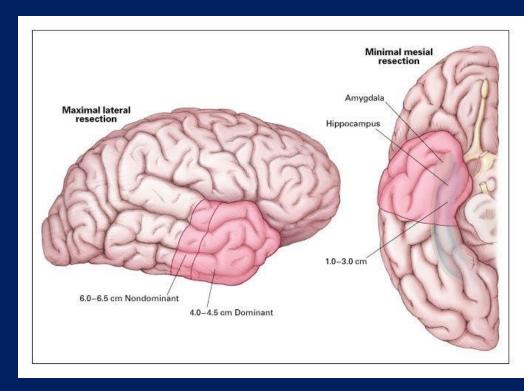
No absolute C/I

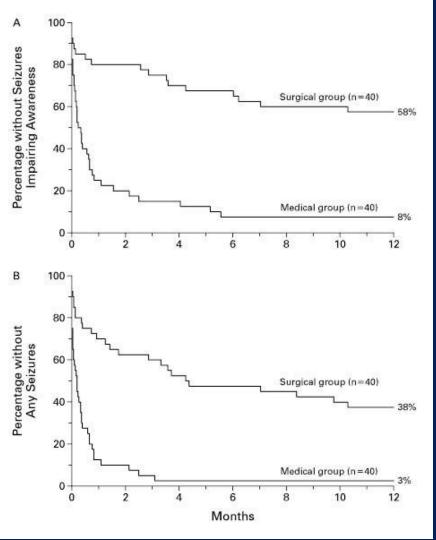

- 1. Age; in elderly should be carefully assessed
- 2. Etiology; progressive neurological disease, except Rasmussen encep
- 3. Concerning comorbidity that high risk for surgery
- 4. Concomitant psychiatric disorder: if it may compromise the result
- 5. IQ < 70 shows poorer prognosis; but not absolute C/I

Misconception re; epilepsy surgery

CL NELIDO
CLAIFURO

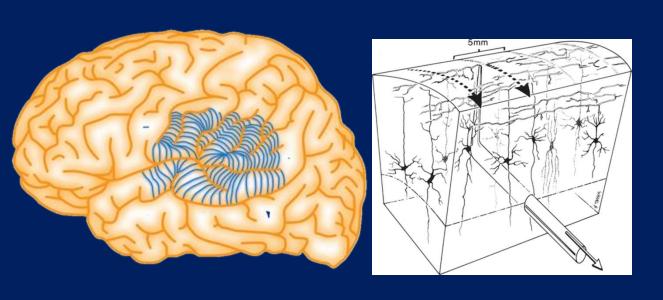
Misconception	Fact
Many drugs need to be tried.	After failing two AEDs, the chance of seizure remission is very low.
Multiple or diffuse lesions on MRI contraindicate surgery.	The epileptogenic zone may involve only one lesion, or part of a lesion.
Bilateral EEG spikes contraindicate surgery.	Bilateral interictal spikes are common in people with unilateral seizure onset.
Surgery is not possible if eloquent cortex is involved.	Risks and benefits can be evaluated on a case-by-case basis.
If there is an existing memory deficit, surgery will worsen it.	Poor memory usually will not get worse after surgery, and may improve.
Chronic psychosis contraindicates surgery.	These individuals may benefit from eliminating or reducing seizures.
IQ<70 contraindicates surgery.	These individuals may benefit from eliminating or reducing seizures.

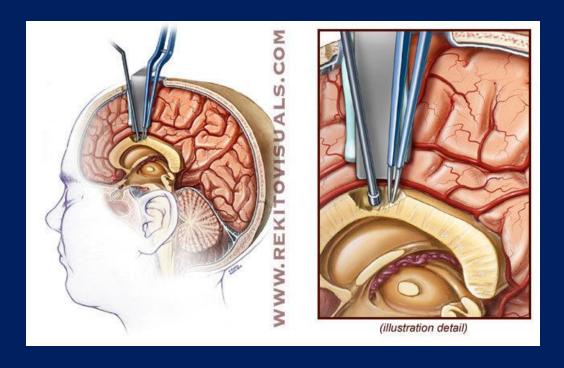

(Adapted from Vakharia et al. Ann Neurol 2018;83:676-690.)



Anterior temporal lobectomy outcome

Results of epilepsy surgery


Procedure	SZ free%	URO
Surgically treatable syndromes		
Mesial TLE -> amygdalohippocampectomy w/ or w/o ATL	70-80%	
Neocortical epilepsy with single circumscribed lesion -> lesionectomy - Temporal - Extratemporal	70-80% 60-70%	
Poorer outcomes		
Neocortical epilepsy with single poorly-circumscribed lesion: - Temporal - Frontal - Parietal - Occipital	66% 27-34% 46% 46%	
Non-lesional epilepsy - Temporal - Extratemporal	60% 35%	


Palliative surgery

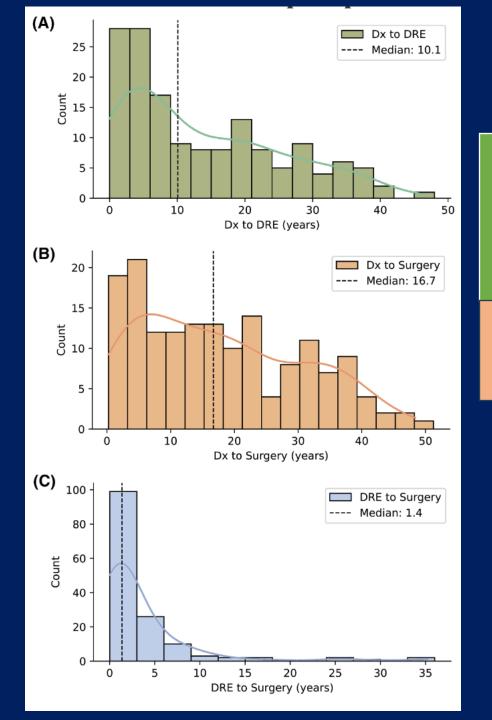
SI-NEURO

- Multiple subpial transection
 - Exclusively in eloquent area;Landua-Kleffner syndrome
 - ■55% SZ free, 4% with deficit

- Corpus callosotomy
 - Partial or total
 - For atonic SZ
 - ■70% shows SZ reduction

Revised: 16 February 2024

Accepted: 26 February 2024


DOI: 10.1111/epi.17944

RESEARCH ARTICLE

Delays in the diagnosis and surgical treatment of drugresistant epilepsy: A cohort study

```
Justin M. Campbell<sup>1,2</sup> | Samantha Yost<sup>2</sup> | Diwas Gautam<sup>2</sup> | Alysha Herich<sup>2</sup>,† | David Botros<sup>3</sup> | Mason Slaughter<sup>3</sup> | Michael Chodakiewitz<sup>4,5,6</sup> | Amir Arain<sup>7</sup> | Angela Peters<sup>7</sup> | Sindhu Richards<sup>7</sup> | Blake Newman<sup>7</sup> | Brian Johnson<sup>7</sup> | Shervin Rahimpour<sup>3</sup> | Ben Shofty<sup>3</sup> |
```


Dx -> DRE 10.1y

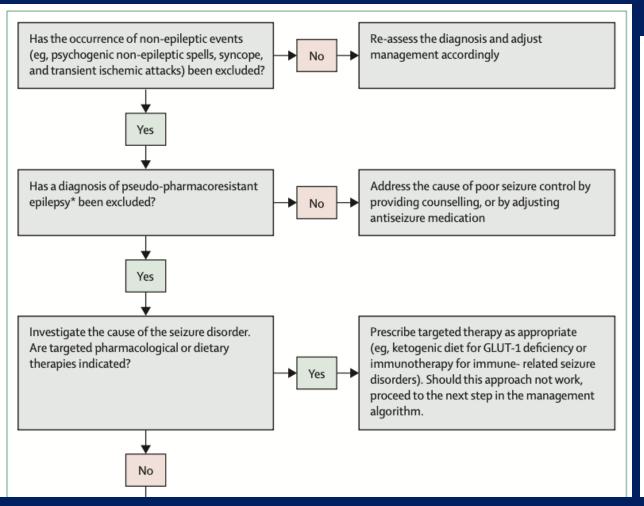
DRE -> Sx 1.4y

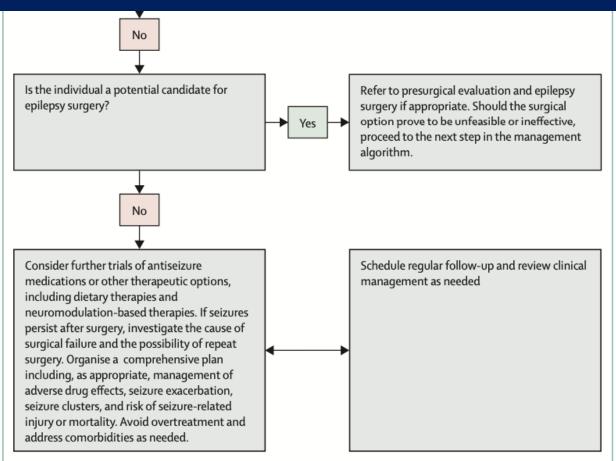
Dx -> Sx 16.7y

DOI: 10.1111/epi.17350

SPECIAL REPORT

Timing of referral to evaluate for epilepsy surgery: Expert Consensus Recommendations from the Surgical Therapies Commission of the International League Against Epilepsy


Recommendation



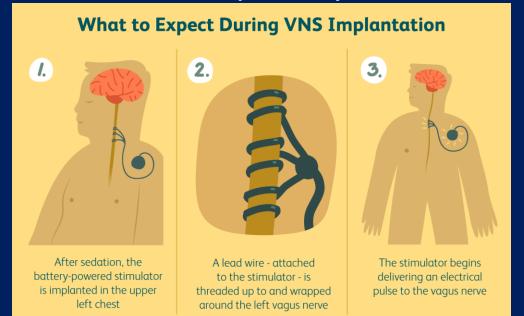
- 1. Referral for a surgical evaluation should be offered to every patient with DRE (up to 70 years of age), as soon as DRE is ascertained,
- 2. A surgical referral should be considered for
 - older patients with DRE who have no surgical C/I
 - patients who are seizure-free on 1–2 ASMs but have a brain lesion in non-eloquent cortex
- 3. Referral for surgery should not be offered to patients with active substance abuse who are non-cooperative with management

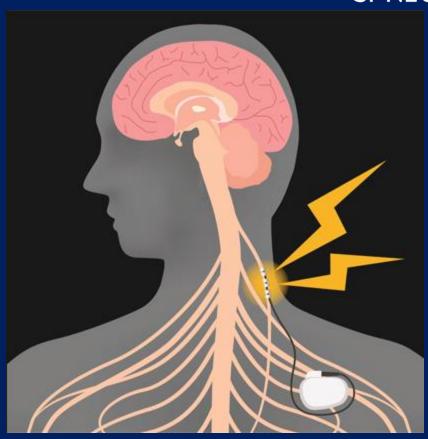
Guideline for suspected or confirmed DRE

Non resection techniques

- Vagus nerve stimulation
- Deep brain stimulation

Trigeminal nerve stimulation


Gamma knife radiosurgery


Non-surgical candidate

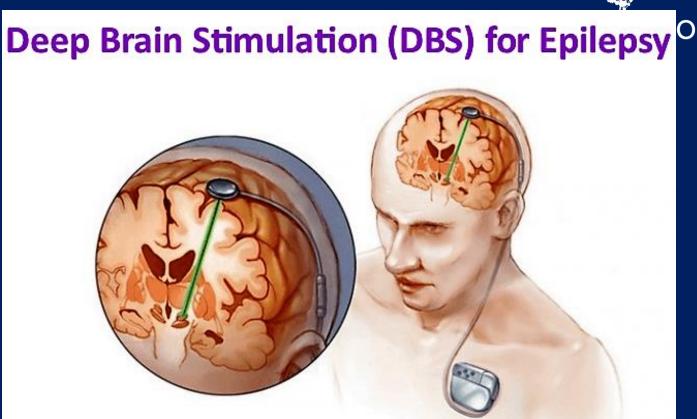
Vagus nerve stimulation

SI-NEURO


- Not surgical candidate
 Both focal and generalized epilepsy
- Median SZ reduction 44.6%
- 50.6% of patients SZ reduction > 50%
- 4.6% SZ free
- SZ reduction 60% in pt < 6 years old

Efficacy of vagus nerve stimulation over time: Review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS > 10 years

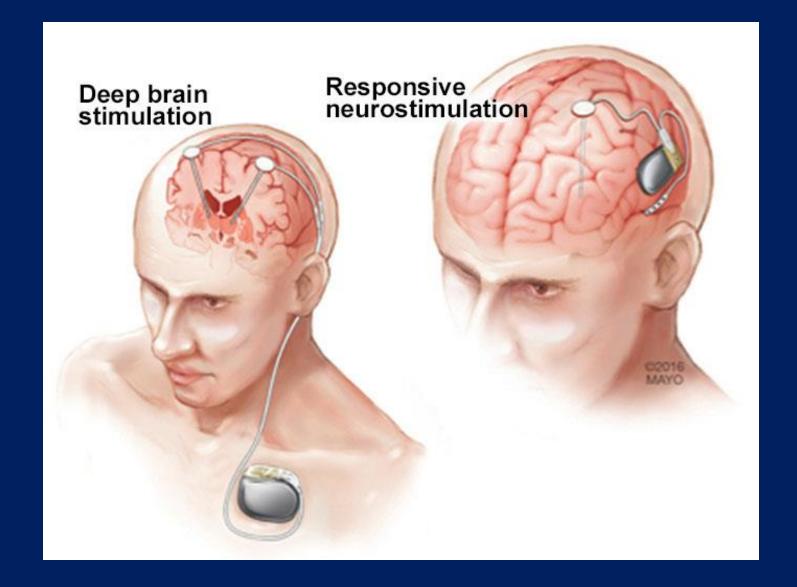
Robert E. Elliott ^{a,*}, Amr Morsi ^a, Omar Tanweer ^a, Bartosz Grobelny ^a, Eric Geller ^b, Chad Carlson ^c, Orrin Devinsky ^{b,c,d}, Werner K. Doyle ^{a,b}



JRO

Deep brain stimulation

- Potentially regulate cortical/subcortical circuit
- Targeted at
 - anterior nuclei of thalamus
 - Caudate nucleus
 - Hypothalamus
 - Cerebellum
- In ATN;
 - ○56% SZ reduction
 - ○54% of pt >50% SZ reduction



Responsive neurostimulation

-ÑEURO Treat Seizures at Their Source

DBS vs RNS

Treatment Alternatives for DRE: Outline

Surgery

- Resective surgery
- Palliative surgery
- Non-resective technique

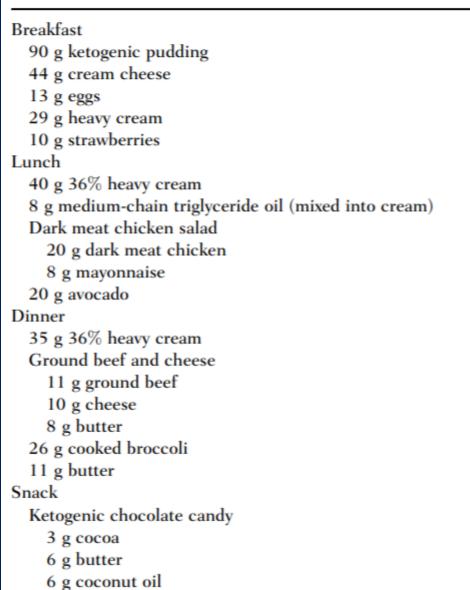
Non-Surgery

Diet
- Ketogenic diet

Ketogenic diet

Ketogenic diet

- High fat -- Adequate protein -- Low carb
- Commonly used in epileptic children
- Force the brain to use "ketone" instead of glucose as a fuel.
- KD promotes synthesis of glutamine (precursor of GABA)



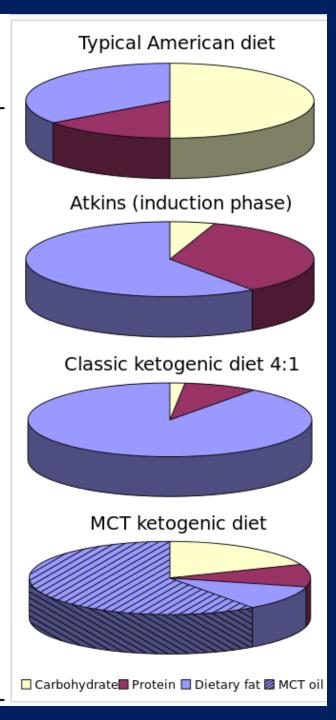
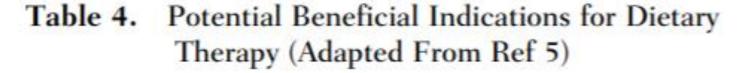


Table 1. Example of Typical Ketogenic Diet Meals Using a 1100 kcal, 4:1 Ketogenic Diet (for a Typical 4-Year-Old Child)



Efficacy

- 50% SZ reduction;>50% of pts
- 90% SZ reduction; 1/3 of pts
- Respond in 2 wks
- Recommendation to try 3 mo

J Child Neurol. 2009;24:979-988

Probable Benefit (at Least 2 Publications)

Glucose transporter protein 1 (GLUT-1) deficiency

Pyruvate dehydrogenase deficiency (PDHD)

Myoclonic-astatic epilepsy (Doose syndrome)

Tuberous sclerosis complex

Rett syndrome

Severe myoclonic epilepsy of infancy (Dravet syndrome)

Infantile spasms

Selected mitochondrial disorders

Children receiving only formula (infants or enterally fed patients)

Suggestion of benefit (one case report or series)

Landau-Kleffner syndrome

Lafora body disease

Combined use with vagus nerve stimulation

Combined use with zonisamide

Rational polyRx

Surgery

Non-Surgery

- Resective surgery
- Palliative surgery
- Non-resective technique

Diet Otogonic die

- Ketogenic diet