



# Selection of ASMs in special population

Kanokwan Boonyapisit, M.D.

Department of Medicine

Siriraj Hospital



## **SELECTING THE FIRST AED**



### Which medications?

- ลักษณะการชักและประเภทของโรคลมชักของผู้ป่วย
- การบริหารยา
- ผลข้างเคียงของยากันชัก
- Drug interaction กรณีที่ผู้ป่วยได้ยาหลายชนิดพร้อมกัน
- Special situations/ other comorbidities
  - Reproductive age
  - Elderly
  - Hepatic impairment
  - Renal impairment

## **AEDs**

- Which AEDs are available?
- Cost
- Experience

# Patient's profile

- Type of seizures
- Age
- Weight
- Occupation
- Underlying diseases
- Current medication
- Psychological profiles

Drug administration
Prone to which side effects
Potential drug interaction

# WOMEN WITH EPILEPSY

PWECP "People with epilepsy of childbearing potential"

# Women with epilepsy

- Side effects of antiepileptic medications
  - Cosmetic side effects
  - Weight issues
  - Osteoporosis
  - Teratogenic effects
- Contraception
- Pregnancy
- Lactation
- How to advise the patients

### Skin and cosmetic side effects

| Side effects                                           | AEDs     | Time frame  | Incidence        | Reversible |
|--------------------------------------------------------|----------|-------------|------------------|------------|
| Alopecia                                               | VPA      |             | 0.5-4%/ up to 6% |            |
|                                                        | CBZ, OXC | 2-3 months  |                  |            |
| Gum<br>hypertrophy                                     | PHT      | Chronic use | 10-40%           | /          |
| Hirsutism,<br>hypertrichosis                           | РВ       |             |                  |            |
|                                                        | PHT      |             |                  |            |
| Acne                                                   | VPA      |             |                  |            |
|                                                        | PHT      |             |                  |            |
| Dupuytren's<br>Contracture,<br>plantar<br>fibromatosis | PB       | Chronic use | Up to 5%         | /          |

Gaitatzis A, Sander JW. CNS Drugs 2013; 27:435–455

# Weight issues from AEDs

| Weight Gain   | Weight Neutral    | Weight Loss |
|---------------|-------------------|-------------|
| Valproate     | Lamotrigine       | Topiramate  |
| Gabapentin    | Levetiracetam (?) | Zonisamide  |
| Carbamazepine | Phenytoin         | Felbamate   |
| Tiagabine (?) |                   |             |
| Vigabatrin    |                   |             |

# Body weight changes with AEDs

| Side effects | AEDs | Time frame                     | Incidence                             | Extent                                     |
|--------------|------|--------------------------------|---------------------------------------|--------------------------------------------|
| Weight gain  | VPA  | 2-3 months and may be continue | Up to 30-40%                          | 1-3% of BW Up to 8% of BW (with high dose) |
|              | GBP  |                                | 23%                                   |                                            |
|              | PGB  |                                | 18%                                   |                                            |
|              | RTG  |                                |                                       |                                            |
| Weight loss  | TPM  | Stabilize after 12-18 months   | 6-17% in leaflet (upto 60% in review) | Up to 7.5% of BW Dose dependent            |
|              | ZNS  |                                | 3%                                    |                                            |
|              | FBM  |                                |                                       |                                            |
|              | STP  |                                |                                       |                                            |

# Drug interaction with OCPs

- AEDs that cause induction of CYP 3A4 increase metabolism of oral contraceptives resulting in failure of contraceptives.
- Potent enzyme inducing AEDs:
  - phenytoin, carbamazepine, primidone, phenobarbital.
- Less-potent enzyme inducing AEDs:
  - oxcarbazepine, lamotrigine
  - topiramate >200 mg.

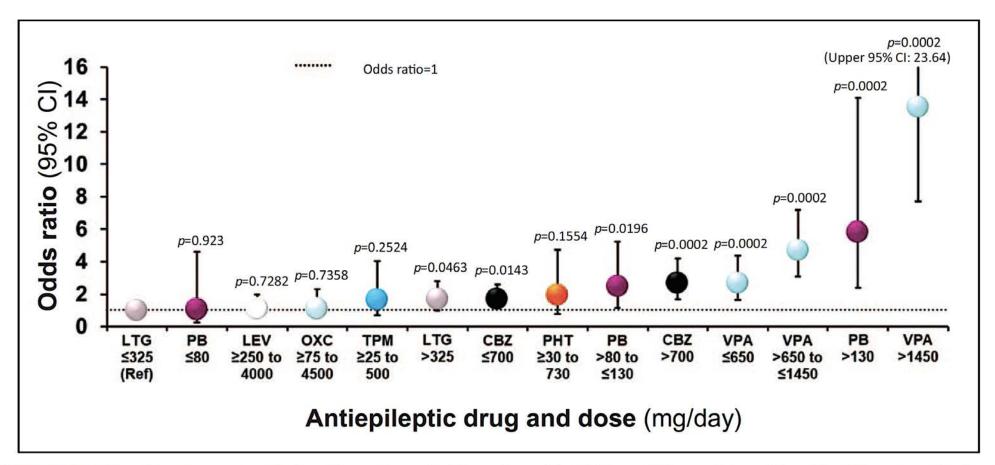
**Table 1.** Recommendations for Use of Hormonal Contraceptives and Enzyme-inducing AEDs from the US Medical Eligibility Criteria for Contraceptive Use and Expert Opinion

|                           | US Medical Eligibility Criteria for Contraceptive Use Category <sup>a</sup> |                         |                                             |                                               |                               |
|---------------------------|-----------------------------------------------------------------------------|-------------------------|---------------------------------------------|-----------------------------------------------|-------------------------------|
| EI-AEDs                   | COCs, Contraceptive Patch (Evra) and Ring (Nuva Ring) <sup>b</sup>          | <b>POP</b> <sup>b</sup> | Progestin Implant (Implanon) <sup>b,c</sup> | DMPA Injection<br>(Depo-Provera) <sup>d</sup> | LNG-IUS (Mirena) <sup>d</sup> |
| Carbamazepine (Tegretol)  | 3                                                                           | 3                       | 2                                           | 1                                             | 1                             |
| Felbamate (Felbatol)      | NA                                                                          | NA                      | NA                                          | NA                                            | NA                            |
| Oxcarbazepine (Trileptal) | 3                                                                           | 3                       | 2                                           | 1                                             | 1                             |
| Phenobarbital             | NA                                                                          | NA                      | NA                                          | NA                                            | NA                            |
| Phenytoin (Dilantin)      | 3                                                                           | 3                       | 2                                           | 1                                             | 1                             |
| Primidone (Mysoline)      | 3                                                                           | 3                       | 2                                           | 1                                             | 1                             |
| Topiramate (Topamax)      | 3                                                                           | 3                       | 2                                           | 1                                             | 1                             |
| Rufinamide (Banzel)       | NA                                                                          | NA                      | NA                                          | NA                                            | NA                            |
| Lamotrigine (Lamictal)    | 3                                                                           | 1                       | 1                                           | NA                                            | 1                             |

### Options of contraception in patients taking EIAEDs

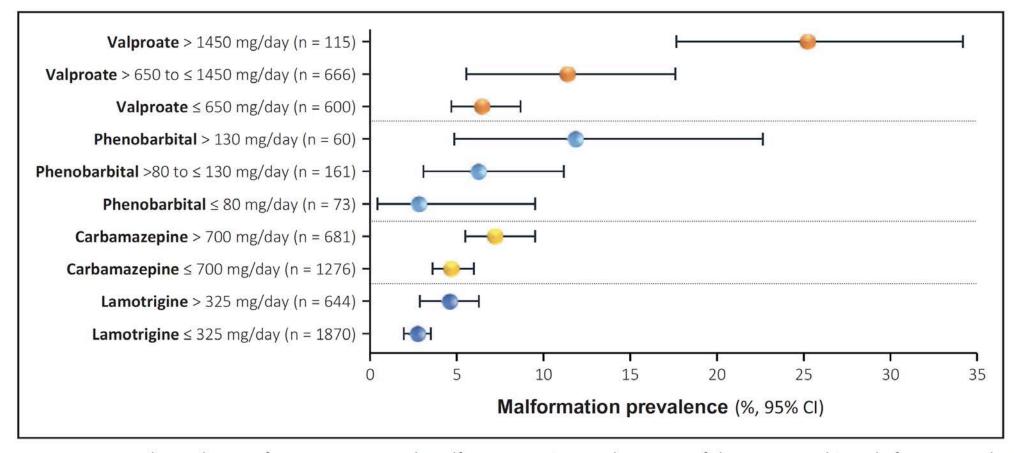
- Intrauterine device (IUD) is an excellent choice, and, given the safety and high contraceptive efficacy, an IUD is a favorable option
- <u>Levonorgestrel IUD</u> prevents pregnancy by local hormonally mediated changes and is unlikely to be impacted by enzyme-inducing AEDs.
- Intramuscular medroxyprogesterone acetate is another long-acting reversible contraceptive that is likely adequate with coadministration of enzyme-inducing AEDs, because the concentration of progestin is high enough that efficacy is maintained but is often not considered a firstline option due to its side effect

### Effects of exogenous hormone on AEDs metabolism


- Metabolism of lamotrigine is increased approximately 50% by cotreatment with combined oral contraceptive pills
- The clearance of valproic acid is also increased with COCs.
- Clearance of LTG appeared to affect by estradiol-containing preparations but not by progesterone-only containing compounds

# Malformation Risks of AEDs in Pregnancy

• No AED 2-3%


Monotherapy 3.7%-6%

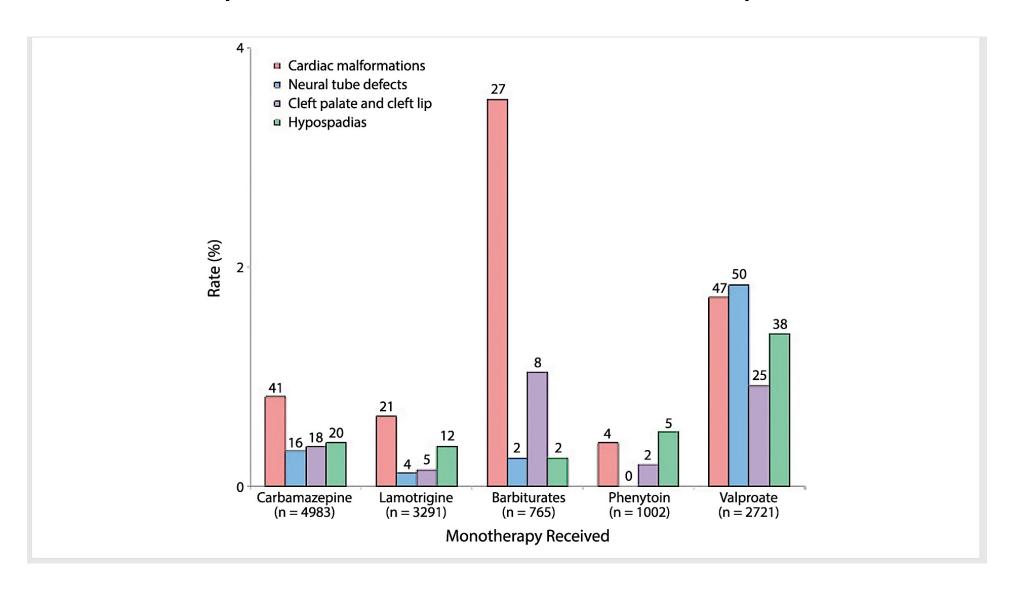
• Polytherapy 6.1%-15%

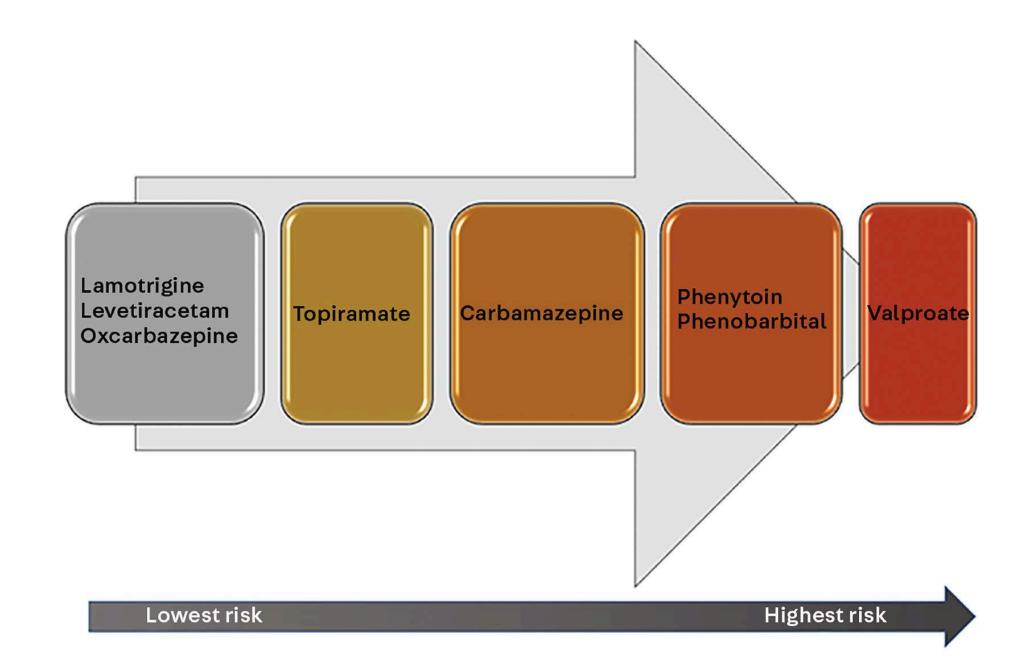


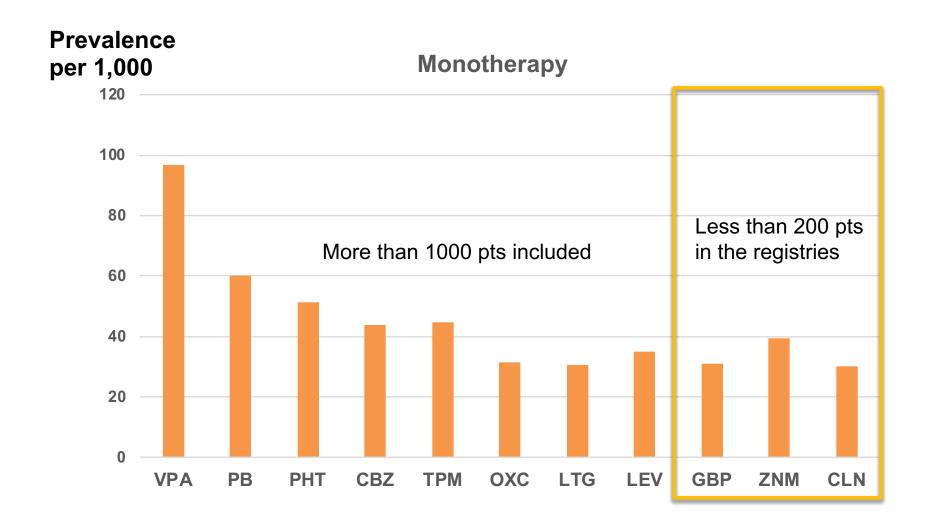
**FIGURE 3.** Risk of major congenital malformations (odds ratios with 95% confidence intervals) with different antiepileptic drug treatments compared with lamotrigine 325 mg/day or less. CBZ, carbamazepine; LEV, levetiracetam; LTG, lamotrigine; OXC, oxcarbazepine; PB, phenobarbital; PHT, phenytoin; Ref, reference; TPM, topiramate; VPA, valproate. Based on Data from [5<sup>\*\*</sup>].

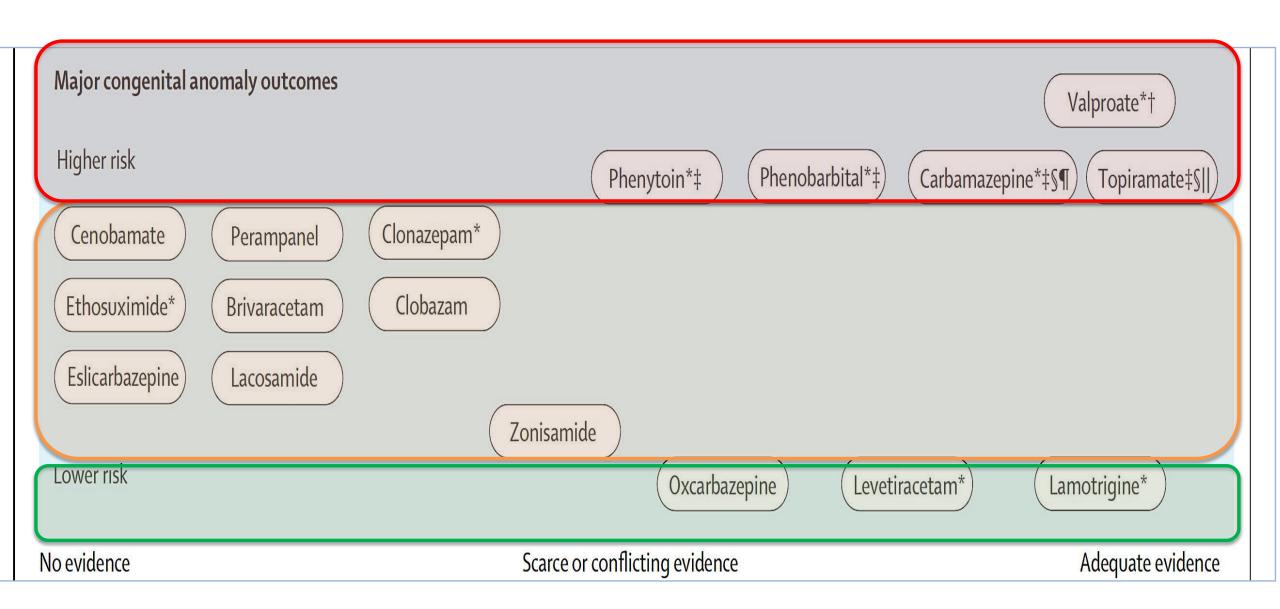
Tomson T, Battino D, Bonizzoni E, et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. Lancet Neurol 2018; 17:530–538.




**FIGURE 2.** Dose dependency of major congenital malformations (%; and 95% confidence intervals) with four antiepileptic drug monotherapies. Based on Data from [5<sup>\*\*</sup>].


Tomson T, Battino D, Bonizzoni E, et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. Lancet Neurol 2018; 17:530–538.


# Are there specific MCMs associated with specific AEDs?


| AEDs | MCMs                                    | Evidences           |
|------|-----------------------------------------|---------------------|
| PHT  | Cleft palate                            | 1 Class II study    |
| CBZ  | Posterior cleft palate                  | 1 Class II study    |
| VPA  | Neural tube<br>defects, facial<br>cleft | 1 Class I study     |
| PB   | Cardiac malformations                   | 2 Class III studies |

### Are there specific MCMs associated with specific AEDs?









Bjork MH, et al. Lancet Neurol 2025; 24: 601-13

#### SPECIAL ARTICLE

### Teratogenesis, Perinatal, and Neurodevelopmental Outcomes After In Utero Exposure to Antiseizure Medication

Practice Guideline From the AAN, AES, and SMFM

Alison M. Pack, MD, MPH, Maryam Oskoui, MD, MSc, Shawniqua Williams Roberson, MEng, MD, Diane K. Donley, MD, Jacqueline French, MD, Elizabeth E. Gerard, MD, David Gloss, MD, MPH&TM, Wendy R. Miller, PhD, RN, CCRN, Heidi M. Munger Clary, MD, MPH, Sarah S. Osmundson, MD, MS, Brandy McFadden, Kaitlyn Parratt, MBBS (Hons 1), Page B. Pennell, MD, George Saade, MD, Don B. Smith, MD, Kelly Sullivan, PhD, Sanjeev V. Thomas, MD, DM, Torbjörn Tomson, MD, Mary Dolan O'Brien, MLIS, PMP, Kylie Botchway-Doe, Heather M. Silsbee, MWC, and Mark R. Keezer, MDCM, PhD

Neurology® 2024;102:e209279. doi:10.1212/WNL.0000000000209279

Correspondence American Academy of Neurology guidelines@aan.com

#### **Recommendation 3 Statements**

3A. Clinicians must counsel their patients with epilepsy that the birth prevalence of any MCM in the general population is approximately 2.4%–2.9%, providing a comparison framework for their individual risk (Level A).

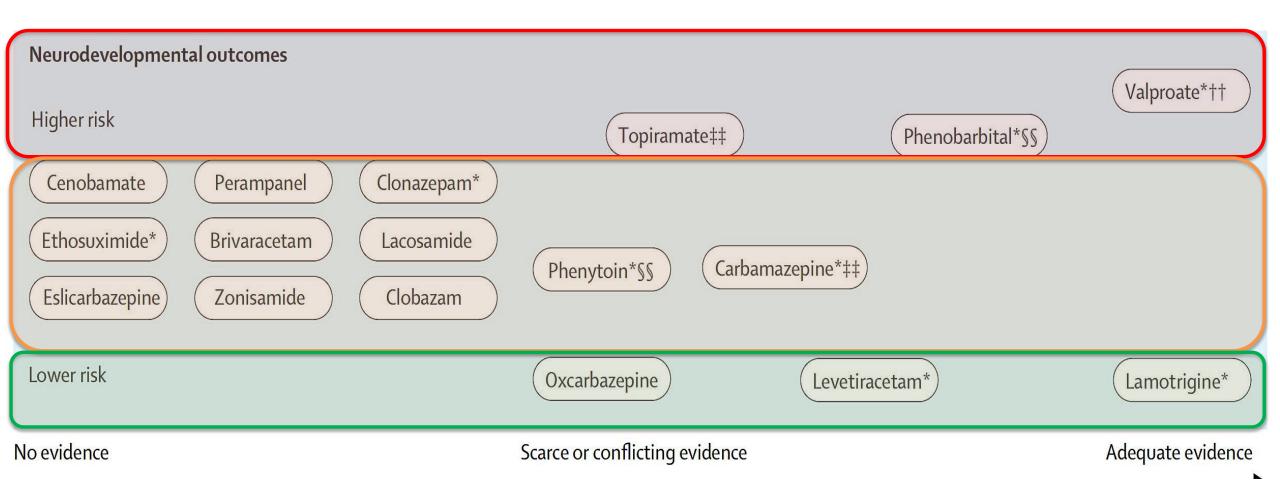
3B. Clinicians must consider using lamotrigine, levetiracetam, or oxcarbazepine in PWECP when appropriate based on the patient's epilepsy syndrome, likelihood of achieving seizure control, and comorbidities, to minimize the risk of MCMs (Level A).

3C. Clinicians must avoid the use of valproic acid in PWECP to minimize the risk of MCMs (composite outcome) or NTDs, if clinically feasible (Level A).

3D. Clinicians must counsel PWECP who are treated with, or are considering starting, valproic acid that the risk of any MCM is the highest with valproic acid as compared with other studied ASMs (Level A).

3E. To reduce the risk of cardiac malformations, clinicians must avoid the use of phenobarbital in PWECP, if clinically feasible (Level A).

3F. To reduce the risk of oral clefts, clinicians should avoid the use of phenobarbital and topiramate in PWECP, if clinically feasible (Level B).


3G. To reduce the risk of urogenital and renal malformations, clinicians should avoid the use of valproic acid in PWECP, if clinically feasible (Level B).

3H. To enable early detection and timely intervention of MCMs, obstetricians should recommend fetal screening for MCMs (e.g., a detailed anatomical ultrasound, where available) for PWECP who are treated with any ASM during pregnancy (Level B).

3I. To enable early detection and timely intervention of congenital heart defects, obstetricians should recommend screening cardiac investigations of the fetus among PWECP who are treated with phenobarbital during pregnancy (Level B).

Pack AM, et al. Neurology 2024;102:e209279

# Neurodevelopmental outcome



Bjork MH, et al. Lancet Neurol 2025; 24: 601-13

# Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child (Review)

Bromley R, Weston J, Adab N, Greenhalgh J, Sanniti A, McKay AJ, Tudur Smith C, Marson AG



Bromley R, et al. Cochrane Database of Systematic Reviews 2014, Issue 10. Art. No.: CD010236.

#### Characteristics of the studies

The review included 28 studies. Participants were women with epilepsy taking commonly used AEDs who were compared to either women without epilepsy or women who had epilepsy but who were not treated with AEDs. Comparisons were also made between children exposed to different AEDs in the womb. The evidence presented in this review was up to date to May 2014.

#### Results

- The evidence for younger children exposed to carbamazepine (CBZ) in the womb was conflicting, however this was likely to be due
- Both younger and older children exposed in the womb to sodium valproate (VPA) showed poorer cognitive development in comparison to children not exposed and children exposed to other AEDs. A link between dose of VPA and child ability was found in six studies; with higher doses of the drug linked to a lower IQ ability in the child. The level of this difference was likely to increase the risk of poorer educational levels.
- Children exposed to CBZ in the womb did not differ in their skills from children exposed to lamotrigine (LTG), however very few studies investigated this. There were also no differences between children exposed to phenytoin (PHT) in the womb and those exposed to CBZ or those exposed to LTG.
- There were very limited data on newer medications such as LTG, levetiracetam or topiramate.

Bromley R, et al. Cochrane Database of Systematic Reviews 2014, Issue 10. Art. No.: CD010236.

#### SPECIAL ARTICLE

### Teratogenesis, Perinatal, and Neurodevelopmental Outcomes After In Utero Exposure to Antiseizure Medication

Practice Guideline From the AAN, AES, and SMFM

Alison M. Pack, MD, MPH, Maryam Oskoui, MD, MSc, Shawniqua Williams Roberson, MEng, MD, Diane K. Donley, MD, Jacqueline French, MD, Elizabeth E. Gerard, MD, David Gloss, MD, MPH&TM, Wendy R. Miller, PhD, RN, CCRN, Heidi M. Munger Clary, MD, MPH, Sarah S. Osmundson, MD, MS, Brandy McFadden, Kaitlyn Parratt, MBBS (Hons 1), Page B. Pennell, MD, George Saade, MD, Don B. Smith, MD, Kelly Sullivan, PhD, Sanjeev V. Thomas, MD, DM, Torbjörn Tomson, MD, Mary Dolan O'Brien, MLIS, PMP, Kylie Botchway-Doe, Heather M. Silsbee, MWC, and Mark R. Keezer, MDCM, PhD

Neurology® 2024;102:e209279. doi:10.1212/WNL.0000000000209279

Correspondence American Academy of Neurology guidelines@aan.com

**Table 4** Global IQ With Exposure to ASM Monotherapy

| ASM           | Total sample size | <b>I</b> <sup>2</sup> | Included studies                                         | Global IQ mean (95% CI) | RMD compared with reference (95% CI)                                                       |
|---------------|-------------------|-----------------------|----------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------|
| Carbamazepine | 316               | 86.0                  | 2 Class I, <sup>50,51</sup> 4 Class III <sup>52-55</sup> | 100.4 (95.8–105.1)      | 6.53 (0.39–12.67)<br>Low confidence in evidence                                            |
| Lamotrigine   | 129               | 77.0                  | 1 Class I, <sup>51</sup> 1 Class III <sup>55</sup>       | 105.8 (100.9–110.6)     | 11.85 (5.53–18.15)<br>Moderate confidence in evidence, upgraded<br>for magnitude of effect |
| Levetiracetam | 42                | NA                    | 1 Class III <sup>56</sup>                                | 99.0 (95.0–103.0)       | 6.3 (0.9–11.7)<br>Very low confidence in evidence                                          |
| Phenytoin     | 76                | 84.8                  | 1 Class I, <sup>51</sup> 1 Class III <sup>53</sup>       | 103.2 (93.0–113.4)      | 9.29 (-1.63 to 20.21) Very low confidence in evidence, downgraded for imprecision          |
| Topiramate    | 27                | NA                    | 1 Class III <sup>56</sup>                                | 100.5 (95.8–105.2)      | 6.58 (0.37–12.80) Very low confidence in evidence                                          |
| Valproic acid | 173               | 69.0                  | 2 Class I, <sup>50,51</sup> 2 Class III <sup>53,56</sup> | 93.9 (89.1–97.9)        | Reference                                                                                  |

Abbreviations: ASM = antiseizure medication;  $I^2$  = a statistical measure of study heterogeneity; NA = not applicable; RMD = raw mean difference.

#### **Recommendation 5 Statements**

5A. To reduce the risk of poor neurodevelopmental outcomes, including ASD and lower IQ, in children born to PWECP, clinicians must avoid the use of valproic acid in PWECP, if clinically feasible (Level A).

5B. Clinicians must counsel PWECP who are treated with, or are considering starting, valproic acid that in utero exposure to valproic acid is likely or possibly associated with a decrease in full scale, verbal, and non-verbal IQ, as compared with other studied ASMs (i.e., carbamazepine, gabapentin, lamotrigine, levetiracetam, phenytoin, and topiramate) (Level A).

Pack AM, et al. Neurology 2024;102:e209279

5C. Clinicians must counsel PWECP who are treated with, or are considering starting, valproic acid that in utero exposure to valproic acid is possibly associated with an increased risk of ASD as compared with other studied ASMs (i.e., carbamazepine, clonazepam, levetiracetam, and lamotrigine) (Level A).

5D. Clinicians should implement age-appropriate developmental screening in children exposed to any ASM in utero born to PWECP (Level B).



### Overview

#### New measures to avoid topiramate exposure in pregnancy

#### Further restrictions on use; pregnancy prevention programme to be put in place

On 11 October 2023, the <u>CMDh</u><sup>1</sup> endorsed new measures recommended by EMA's safety committee (<u>PRAC</u>) in September to avoid exposure of children to topiramate-containing medicines in the womb, because the medicine may increase the risk of neurodevelopmental problems after exposure during pregnancy. Topiramate is already known to cause serious birth defects when used during pregnancy.

Topiramate containing medicines are used in the European Union (EU) for the treatment of epilepsy and prevention of migraine. In some EU countries, the medicine is also used in combination with phentermine for weight reduction. At present, topiramate must not be used to prevent migraine or manage body weight during pregnancy and patients who can become pregnant must use effective birth control when using topiramate.

For patients using topiramate for the treatment of epilepsy, the medicine should not be used during pregnancy unless there is no other suitable treatment available.

The <u>CMDh</u> has also agreed to additional measures, in the form of a pregnancy prevention programme, to avoid exposure of children to topiramate in the womb. These measures will inform any woman or girl who is able to have children of the risks of taking topiramate during pregnancy and the need to avoid becoming pregnant while taking topiramate.

Healthcare professionals should ensure that all patients who can become pregnant are fully aware of the risks of taking topiramate during pregnancy. Alternative treatment options should be considered and the need for topiramate treatment should be reassessed at least annually.

The CMDh is a medicines regulatory body representing the European Union (EU) Member States, Iceland, Liechtenstein and Norway.

https://www.ema.europa.eu/en/medicines/human/referrals/topiramate



Home > Drug Safety Update

### Topiramate (Topamax): introduction of new safety measures, including a Pregnancy Prevention Programme

Topiramate is now contraindicated in pregnancy and in women of childbearing potential unless the conditions of a Pregnancy Prevention Programme are fulfilled. This follows a review by the MHRA which concluded that the use of topiramate during pregnancy is associated with significant harm to the unborn child. Harms included a higher risk of congenital malformation, low birth weight and a potential increased risk of intellectual disability, autistic spectrum disorder and attention deficit hyperactivity disorder in children of mothers taking topiramate during pregnancy.

From: Medicines and Healthcare products Regulatory Agency

Published 20 June 2024

#### General advice for healthcare professionals:

- · topiramate should not be used:
  - · in pregnancy for prophylaxis of migraine
  - in pregnancy for epilepsy unless there is no other suitable treatment
- topiramate should not be used in women of childbearing potential unless the conditions of the Pregnancy Prevention Programme are fulfilled. This aims to ensure that all women of childbearing potential:
  - · are using highly effective contraception
  - have a pregnancy test to exclude pregnancy before starting topiramate
  - are aware of the risks from use of topiramate
- please see specific <u>advice for prescribers</u> and <u>advice for dispensers</u>
- ensure women of childbearing potential sign the Risk Awareness
  Form, you will receive materials including the Risk Awareness Form
  by post in the coming weeks to use in the implementation of the
  Pregnancy Prevention Programme
- report suspected adverse drug reactions associated with topiramate to the Yellow Card scheme

#### References

- 1. Bjørk MH and others. <u>Association of Prenatal Exposure to Antiseizure</u>

  <u>Medication with Risk of Autism and Intellectual Disability</u>. JAMA Neurology
  2022: volume 79, pages 672 to 681. <u>←</u> <u>←</u> <sup>2</sup>
- Cohen JM and others. <u>Comparative Safety of Antiseizure Medication</u> <u>Monotherapy for Major Malformations</u>. Annals of Neurology 2023: volume 93, pages 551 to 562. <u>←</u>
- 3. Hernandez-Diaz S and others. <u>Fetal growth and premature delivery in pregnant women on anti-epileptic drugs</u>. Annals of Neurology 2017: volume 82, pages 457to 465. <u>←</u>
- 4. Blotière PO and others. Risk of early neurodevelopmental outcomes associated with prenatal exposure to the antiepileptic drugs most commonly used during pregnancy: a French nationwide population-based cohort study. BMJ Open 2020: volume 10, page e034829. ←

- 5. Bromley RL and others. Cognition in school-age children exposed to levetiracetam, topiramate, or sodium valproate. Neurology 2016: volume 87, pages 1943 to 1953. ←
- Dreier JW and others. <u>Prenatal Exposure to Antiseizure Medication and Incidence of Childhood- and Adolescence-Onset Psychiatric Disorders</u>.
   JAMA Neurology 2023: volume 80, pages 568 to 577. <a href="#">→</a>
- 7. Hernandez-Diaz S and others. Topiramate during pregnancy and the risk of neurodevelopmental disorders in children. Pharmacoepidemiology and Drug Safety 2022: volume 31, page 11. [Full study unavailable at time of review] ←
- 8. Knight R and others. Adaptive behaviour in children exposed to topiramate in the womb. A thesis submitted to the University of Manchester for the degree of Doctor of Clinical Psychology in the Faculty of Biology, Medicine, and Health. 2020. ←

Research

JAMA Neurology | Original Investigation

# Association of Prenatal Exposure to Antiseizure Medication With Risk of Autism and Intellectual Disability

Marte-Helene Bjørk, MD, PhD; Helga Zoega, PhD; Maarit K. Leinonen, MD, PhD; Jacqueline M. Cohen, PhD; Julie Werenberg Dreier, PhD; Kari Furu, PhD; Nils Erik Gilhus, MD, PhD; Mika Gissler, PhD; Óskar Hálfdánarson, PhD; Jannicke Igland, PhD; Yuelian Sun, PhD; Torbjörn Tomson, MD, PhD; Silje Alvestad, MD, PhD; Jakob Christensen, MD, PhD

#### The Nordic register-based study of antiepileptic drugs in pregnancy (SCAN-AED)

Design: Population-based cohort study using health register and social register data from Denmark, Finland, Iceland, Norway, and Sweden (1996-2017; analysis performed February 2022)

Included 4,494,926 alive-born children with available mother-child identities and maternal prescription data

Main outcome: Estimated cumulative incidence at age 8 years in exposed and unexposed children. Cox regression adjusted for potential confounders yielded adjusted hazard ratios (aHRs) with 95%Cls for autism spectrum disorder (ASD), intellectual disability (ID), or any neurodevelopmental disorder (ASD and/or ID)

Figure 1. Cumulative Incidence of Neurodevelopmental Disorders After Prenatal Exposure to Antiseizure Medication (ASM)

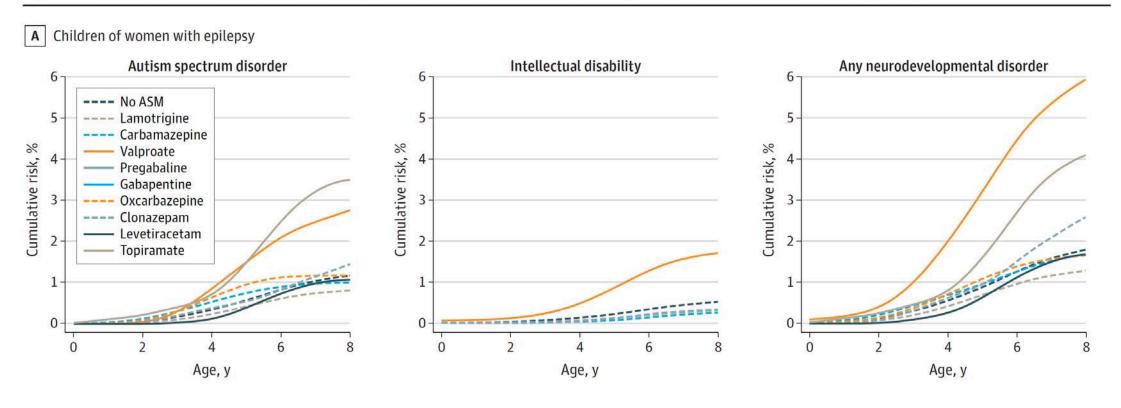



Table 3. Risk of Any Neurodevelopment Disorder (ND)<sup>a</sup> After Prenatal Antiseizure Medication (ASM)<sup>b</sup> Exposure by Dose Compared With Unexposed Children

| Mean daily dose <sup>c</sup>   | Total, No. | With ND, No. | Adjusted hazard ratio<br>(95% CI) <sup>d</sup> |
|--------------------------------|------------|--------------|------------------------------------------------|
| No ASM                         | 4 462 418  | 68 295       | 1 [Reference]                                  |
| Lamotrigine, mg <sup>b</sup>   |            |              |                                                |
| <150                           | 4933       | 108          | 1.46 (1.20-1.76)                               |
| ≥150                           | 4267       | 51           | 1.01 (0.76-1.32)                               |
| Carbamazepine, mg <sup>b</sup> |            |              |                                                |
| <500                           | 2012       | 71           | 1.74 (1.38-2.20)                               |
| ≥500                           | 1492       | 42           | 1.48 (1.09-2.00)                               |
| Valproate, mg <sup>b</sup>     |            |              |                                                |
| <750                           | 1982       | 97           | 2.27 (1.86-2.77)                               |
| ≥750                           | 945        | 103          | 5.64 (4.65-6.84)                               |
| Oxcarbazepine, mg <sup>b</sup> |            |              |                                                |
| <500                           | 396        | 16           | 1.54 (0.95-2.52)                               |
| ≥500                           | 1169       | 36           | 1.64 (1.19-2.28)                               |
| Topiramate, mg <sup>b</sup>    |            |              |                                                |
| <100                           | 717        | 16           | 1.71 (1.04-2.79)                               |
| ≥100                           | 129        | 6            | 2.93 (1.32-6.55)                               |

Epileptic Disord 2022; 24 (6): 1020-1032



# Breastfeeding while on treatment with antiseizure medications: a systematic review from the ILAE Women Task Force

Torbjörn Tomson<sup>1</sup>, Dina Battino<sup>2</sup>, Rebecca Bromley<sup>3</sup>, Silvia Kochen<sup>4</sup>, Kimford J. Meador<sup>5</sup>, Page B. Pennell<sup>6</sup>, Sanjeev V. Thomas<sup>7</sup>

Epileptic Disord 2022; 24:1021-32

#### Concentration of ASM in breastmilk

| Low <10%                                                                            | Approx. 30%                                                           | High > 30%                                  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|
| carbamazepine gabapentin levetiracetam oxcarbazepine phenytoin valproate clonazepam | lamotrigine<br>topiramate<br>brivaracetam<br>Lacosamide<br>perampanel | ethosuximide<br>phenobarbital<br>zonisamide |

Percentage of maternal serum concentration

Epileptic Disord 2022; 24:1021-32

- Prospective long-term follow-up studies of developmental outcomes among children that have been breastfed by mothers taking ASMs are sparse and have mainly involved children whose mothers were taking carbamazepine, lamotrigine, levetiracetam, phenytoin or valproate while breastfeeding.
- None of these studies indicated poorer outcome among breastfed children compared with those who were not breastfed

Although these studies have not indicated poorer outcome among breastfed children compared with those who were not breastfed, further data on long-term outcomes are needed to draw firm conclusions.

- It is concluded that breastfeeding should in general be encouraged in women taking ASMs, given the wellestablished benefits of breastfeeding with regard to both short- and long-term infant health in the general population.
- Counselling needs to be individualized including information on the current knowledge regarding the woman's specific ASM treatment.

## Actions to reduce the risk of maternal seizures and risks associated with seizures

#### Reducing the risk of maternal seizures

- Optimize ASM dose, taking into account postdelivery related changes in pharmacokinetics as well as the possible need for intensified treatment due to sleep deprivation and other stressors
- Promote adherence to prescribed medication
- Reduce, as far as possible, sleep deprivation and other seizure-provoking factors; consider sharing the feeding, in particular, during night-time by having someone else share responsibility for feeding using a bottle of pumped breastmilk or formula

#### Reducing risks to the infant associated with maternal seizures

- Sit in a low position while breastfeeding (soft surface on the floor or low bed)
- Engage a "feeding buddy" to observe while feeding, in particular, during the first period after delivery until the situation has become stable regarding seizure control
- Do not bathe the infant alone

### Male reproductive age



Q Search

Medicines - Human regulatory - Veterinary regulatory - Committees - News & events - Partners & networks - About us -

Home > News

> Potential risk of neurodevelopmental disorders in children born to men treated with valproate medicines: PRAC recommends precautionary measures

# Potential risk of neurodevelopmental disorders in children born to men treated with valproate medicines: PRAC recommends precautionary measures



12 January 2024

EMA's safety committee (PRAC) is recommending precautionary measures for the treatment of male patients with valproate medicines.



Human

Pharmacovigilance

Referrals

In reaching its conclusion, the <u>PRAC</u> reviewed data from a <u>retrospective observational study</u> carried out by companies that market valproate as an obligation following a <u>previous review</u> of valproate use during pregnancy. The Committee also considered data from other sources, including non-clinical (laboratory) studies and scientific literature, and consulted patients and clinical experts.

The retrospective observational study used data from multiple registry databases in Denmark, Norway and Sweden and focused on birth outcomes in children born to men who were taking valproate or taking lamotrigine or levetiracetam (other medicines to treat conditions similar to those treated with valproate) around the time of conception.

The results of the study suggest there may be an increased risk of neurodevelopmental disorders in children born to men taking valproate in the 3 months before conception. Neurodevelopmental disorders are problems with development that begin in early childhood, such as autism spectrum disorders, intellectual disability, communication disorders, attention deficit/hyperactivity disorders and movement disorders.

The data showed that around 5 out of 100 children had a neurodevelopmental disorder when born to fathers treated with valproate compared with around 3 out of 100 when born to fathers treated with lamotrigine or levetiracetam. The study did not investigate the risk in children born to men who stopped using valproate more than 3 months before conception.

- European Medicines Agency. PRAC non-interventional imposed PASS final study report assessment report: valproate and related substances (sodium valproate, valproic acid, valproate semisodium, valpromide, valproate magnesium). 2024, European Medicines Agency.
- European Medicines Agency. A post-authorization safety study (PASS) to evaluate
  the paternal exposure to valproate and the risk of neurodevelopmental disorders
  including autism spectrum disorder as well as congenital abnormalities in offspring—a
  population-based retrospective study. 2023, European Medicines Agency.
- Christensen J, Trabjerg BB, Dreier JW. Valproate use during spermatogenesis and risk to offspring. JAMA Netw Open 2024; 7: e2414709.
- Tomson T, Muraca G, Razaz N. Paternal exposure to antiepileptic drugs and offspring outcomes: a nationwide population-based cohort study in Sweden. *J Neurol* Neurosurg Psychiatry 2020; 91: 907–13

Review

#### Management of reproductive risks in people with epilepsy



Marte Helene Bjørk, Cristine Cukiert, Bruna Nucera, Rebecca L Bromley

Lancet Neurol 2025; 24: 601-13

|                                        | Comparison                                       | HR (95% CI)       |  |
|----------------------------------------|--------------------------------------------------|-------------------|--|
| Composite of neurodevelopment          | tal diagnoses                                    |                   |  |
| PAS Study (2023) <sup>37,38</sup>      |                                                  |                   |  |
| Denmark                                | Valproate vs levetiracetam and lamotrigine       | 1.34 (0.79-2.25)  |  |
| Sweden                                 | Valproate vs levetiracetam and lamotrigine       | 1.54 (0.95-2.51   |  |
| Norway                                 | Valproate vs levetiracetam and lamotrigine       | 1.52 (0.93-2.49)  |  |
| All studied countries                  | Valproate vs levetiracetam and lamotrigine       | 1.76 (0.83-3.71)* |  |
| Christensen et al (2024) <sup>39</sup> |                                                  |                   |  |
| Denmark                                | Valproate vs general population comparator       | 1.10 (0.88-1.37)  |  |
| Autistic spectrum disorder diagn       | oses                                             |                   |  |
| Tomson et al (2020)40                  |                                                  |                   |  |
| Sweden                                 | Valproate vs general population control          | 1.4 (0.6-3.1)     |  |
| PAS Study (2023) <sup>37,38</sup>      |                                                  |                   |  |
| Denmark                                | Valproate vs levetiracetam and lamotrigine       | 0.76 (0.30-1.89)  |  |
| Sweden                                 | Valproate vs levetiracetam and lamotrigine       | 2.68 (1.17-6.12)  |  |
| Norway                                 | Valproate vs levetiracetam and lamotrigine       | Not reported      |  |
| All studied countries                  | Valproate vs levetiracetam and lamotrigine       | 1.52 (0.83-2.81)* |  |
| Christensen et al (2024) <sup>39</sup> |                                                  |                   |  |
| Denmark                                | Valproate vs general population comparator       | 0.92 (0.65-1.30)  |  |
| Intellectual disability diagnoses      |                                                  |                   |  |
| Tomson et al (2020)40                  |                                                  |                   |  |
| Sweden                                 | Valproate vs general population control          | 1.6 (0.5-5.1)     |  |
| Attention deficit hyperactivity d      | iagnoses                                         |                   |  |
| Tomson et al (2020)40                  |                                                  |                   |  |
| Sweden                                 | Valproate vs general population control          | 1.4 (0.7-2.8)     |  |
| HR=hazard ratio. *Pooled HR.           | -based studies regarding use of valproate by men |                   |  |

Table 1: Findings from population-based studies regarding use of valproate by men durin spermatogenesis and offspring neurodevelopmental outcomes

Lancet Neurol 2025; 24: 601–13

**Epilep** 

Systematic review

## Paternal exposure to antiseizure medications and offspring outcomes: a systematic review

Eliza Honybun , , Genevieve Rayner, Charles B Malpas , , , a Terence J O'Brien, Frank J Vajda, Piero Perucca, Emilio Perucca, Emilio Perucca, Emilio Perucca, e Emilio Perucca

Results Of 923 studies identified by the search and screened by title and abstract, 26 underwent full-text review and 10 met eligibility criteria. There was limited evidence available, but there appeared to be no clear evidence for an adverse impact of paternal ASM use on offspring outcomes.

Honybun E, et al. J Neurol Neurosurg Psychiatry 2024;0:1-11

#### WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ While maternal use of some antiseizure medications carries an elevated risk of adverse outcomes for the developing fetus, it is unclear whether paternal exposure to these drugs also carries risks for the offspring.

#### WHAT THIS STUDY ADDS

⇒ Our systematic review shows that evidence for any risk to the offspring resulting from paternal exposure to antiseizure medications is scarce and inconsistent, with most studies showing no increased risk compared with unexposed controls. Therefore, the available evidence does not justify major concerns.

#### HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ The results of our study inform the counselling of males with epilepsy and highlight the need for more research in this area, focusing in particular on risks associated with individual medications.

#### Advising the PWECP

"People with epilepsy of childbearing potential"

- ควรมีการให้ความรู้เกี่ยวกับโอกาสและความเสี่ยงที่จะเกิดความผิดปกติของเด็กใน ครรภ์สำหรับหญิงวัยเจริญพันธุ์ที่ต้องรับประทานยากันชัก เพื่อผู้ป่วยจะได้ สามารถวางแผนและตัดสินใจเรื่องการตั้งครรภ์ล่วงหน้าได้
- แนะนำวิธีการคุมกำเนิดที่เหมาะสม
- ??ควรมีการให้ความรู้เกี่ยวกับโอกาสและความเสี่ยงที่จะเกิดความผิดปกติของการ พัฒนาการของเด็กสำหรับชายวัยเจริญพันธุ์ที่ต้องรับประทานยากันชักsodium valproate เพื่อผู้ป่วยจะได้สามารถวางแผนและตัดสินใจเรื่องการมีบุตรล่วงหน้าได้

- ควรวางแผนล่วงหน้าก่อนการตั้งครรภ์เนื่องจาก
  - —ในกรณีที่มารดาไม่มีอาการชักนานเกิน 2 ปีอาจพิจารณาหยุดยากันชักได้
  - —ในกรณีที่คุมอาการชักได้ดี และมารดารับประทานยากันชักมากกว่า 1 ชนิดอาจ พิจารณาลดขนาดยาหรือลดยาเหลือ 1 ชนิด เพื่อลดโอกาสการเกิดผลข้างเคียง ต่อทารกในครรภ์

- ควรวางแผนล่วงหน้าก่อนการตั้งครรภ์เนื่องจาก
  - -ควรหลีกเลี่ยงการใช้ยากันชักที่มี teratogenic effect สูง เช่น sodium valproate ในช่วงการตั้งครรภ์หากสามารถทำได้
  - -ควรหลีกเลี่ยงการใช้ยากันชักที่มี teratogenic effect สูง เช่น sodium valproate phenobarbital, topiramate ในช่วงการตั้งครรภ์หากสามารถทำได้
  - -ยากันชักบางชนิด ได้แก่ sodium valproate, topiramate อาจมีผลต่อ neurodevelopmental outcome ในเด็กได้

- ในขณะที่ผู้ป่วยตั้งครรภ์ไม่ควรปรับหรือเปลี่ยนยากันชัก เนื่องจากโอกาสที่ จะเกิดอันตรายต่อมารดาและทารกในครรภ์หากผู้ป่วยเกิดการชักมี<u>มากกว่า</u> โอกาสการเกิดผลข้างเคียงต่อทารกในครรภ์
- ควรมีการตรวจคัดกรองความผิดปกติของเด็กในครรภ์มารดา โดยเฉพาะ malformation ที่พบได้บ่อยและรุนแรง เช่น neural tube defect

- ในผู้หญิงวัยเจริญพันธ์ควรได้รับ folic acid supplementation ในขนาด 4-5 mg/d ซึ่งจากการศึกษาที่ผ่านมา อาจช่วยลดโอกาสการเกิด neural tube defects ได้บ้าง
- ??ในผู้หญิงวัยเจริญพันธ์ควรได้รับ folic acid supplementation ในขนาด >0.4 mg/d (0.4-0.8 mg/d or 0.4-4 mg/d) ซึ่งจากการศึกษาที่ผ่านมา อาจ ช่วยลดโอกาสการเกิด neural tube defects ได้บ้าง และช่วยให้ neurodevelopmental outcome ดีขึ้น

#### Epilepsy and lactation

- ยากันชักส่วนมากไม่ได้ excrete ออกมาในน้ำนมมากนัก จึงมีผลน้อยต่อ เด็ก ยกเว้น phenobabital, gabapentin, lamotrigine, and topiramate
- ยังไม่มีหลักฐานชัดเจนว่ายากันชักเหล่านี้ในน้ำนมมีผลกับ cognition ของ เด็ก
- แนะนำให้มารดาสามารถ breast feeding ได้
- Phenobarbital อาจจะมีผลทำให้เด็กง่วงซึมได้

#### **ELDERLY WITH EPILEPSY**



#### Elderly

- Changes in pharmacokinetics of AEDs in the elderly
- Side effects of the AEDs esp. cognitive side effects
- Drug interaction
- Osteoporosis

#### Pharmacokinetic changes in the elderly

Lean body mass ♥
Total body water mass ♥
Proportion of fat ♥

Volume distribution of hydrophilic drugs and lipophilic drugs  $\Psi$ 



#### Decreased Volume distribution: What should we do?

Lean body mass **Ψ** Total body water mass y Proportion of fat

Beware of increased drug level Volume distribution o and side effects esp. loading dose in frail elderly

c drugs Ψ

Serum drug concentrations **^** 

Level = loading dose (mg) Vd (L/kg)x weight (kg)

#### Pharmacokinetic changes in the elderly

- Decreased albumin level leads to increased free fraction of drugs in the body.
- Measurement of total serum drug concentration may not reflect the true unbound drug level.
- Reduce hepatic metabolism (evidence is still unclear) and reduce renal excretion with reduction of creatinine clearance

#### Caution of SE of ASMs in elderly

| AEDs             | Special precautions                                                                                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phenobarbital    | Drowsiness, cognitive dysfunction  May reduce effects of other drugs (enzyme inducer)                                                                                                                                                                  |
| Phenytoin        | Reduced metabolism and clearance Reduced protein binding → increased free fraction Increase incidence of adverse effects PHT level may be increased by amiodarone, cimetidine, isoniazid, trazodone May reduce effects of other drugs (enzyme inducer) |
| Carbamazepine    | Increase incidence of adverse effects May reduce effects of other drugs (enzyme inducer) Hyponatremia                                                                                                                                                  |
| Sodium valproate | Drowsiness, parkinsonism Thrombocytopenia at higher dosage                                                                                                                                                                                             |
| Oxcarbazepine    | Increase incidence of adverse effects  Hyponatremia                                                                                                                                                                                                    |
| Topiramate       | Cognitive side effects at higher dosage (can be avoided by slow titration)                                                                                                                                                                             |

#### Interaction between AEDs and drugs for dementia

**Table 2.** Interactions Between Medications for Alzheimer Disease and Antiepileptic Drugs<sup>a</sup>

| Alzheimer<br>Medications | PHT          | CBZ          | PB           | BZD  | VPA  | OXC          | LEV  | TOP  | GBP  | LTG  | ZNS | PGB  |
|--------------------------|--------------|--------------|--------------|------|------|--------------|------|------|------|------|-----|------|
| Donepezil (D)            | $\downarrow$ | $\downarrow$ | $\downarrow$ | _    | _    | $\downarrow$ | _    | _    | _    | _    | _   | _    |
| Galantamine (G)          | $\downarrow$ | $\downarrow$ | $\downarrow$ | _    | _    | $\downarrow$ |      | _    | _    | _    | _   | _    |
| Rivastigmine (R)         | none         | none         | none         | none | none | none         | none | none | none | none | _   | none |
| Tacrine (T)              | none         | none         | none         | none | none | none         | none | none | none | none | _   | none |
| Memantine (M)            | none         | none         | none         | none | none | none         | none | none | none | none | _   | none |

Jenssen S, Schere D. American Journal of Alzheimer's Disease & Other Dementias 2010;25:18-26

# UNDERLYING DISEASES CONCOMITTENT MEDICATION



#### Matching AEDs with other comorbidities

|                                 | Avoid/ caution                             | Prefer                     |
|---------------------------------|--------------------------------------------|----------------------------|
| Migraine                        |                                            | VPA, TPM                   |
| Mood lability/ bipolar disorder | -                                          | LTG, CBZ, OXC,<br>PHT, VPA |
| Pain                            |                                            | CBZ, PGB, GBP              |
| Anxiety                         | FLB, LEV, LTG, TGB                         | BZD, GBP, PGB              |
| Depression                      | Barbiturates, LEV, PGB, TGB, TPM, VGB, ZNS | LTG                        |
| On warfarin                     | Enzyme inducing AEDs                       |                            |
| On OCP                          | Enzyme inducing AEDs                       |                            |
| HLA 1502 +ve                    | CBZ                                        |                            |
| Sulfa allergy                   | ZNS                                        |                            |

#### Matching AEDs with other comorbidities

|                            | Avoid/ caution       | Prefer        |
|----------------------------|----------------------|---------------|
| Obesity                    | VPA, PGB, GBP        | TPM, ZNS      |
| Cognitive dysfunction      | PB, TPM, ZNS         | LTG, LEV, OXC |
| Restless leg syndrome      | -                    | GBP, PGB, CZP |
| Tremor                     | VPA                  | TPM, PER      |
| Gait ataxia                | CBZ, PHT             | -             |
| Parkinson disease          | -                    | ZNS           |
| Multiple concomitant drugs | Enzyme inducing AEDs | _             |

Park KM, Kim SE, Lee BI. Journal of Epilepsy Research 2019; 9: 14-26

### Effects on hepatic enzymes

| <b>Enzyme inhibitor</b> | Enzyme inducer |
|-------------------------|----------------|
| Sodium valproate        | Phenytoin      |
|                         | Carbamazepine  |
|                         | Phenobarbital  |

## Effects on hepatic enzymes

| <b>Enzyme inhibitor</b> | Enzyme inducer                     |
|-------------------------|------------------------------------|
| Sodium valproate        | Phenytoin                          |
|                         | Carbamazepine                      |
|                         | Phenobarbital                      |
|                         | Weak enzyme inducer at higher dose |
|                         | Oxcarbazepine                      |
|                         | Topiramate (>200mg)                |
|                         | Perampanel (>8-12 mg)              |

## Effects of enzyme inducing drugs on the concentration and clearance of concurrent AEDs

| Effect on Concurrent AED Serum Concentration | Approximate Change in AED Clearance |
|----------------------------------------------|-------------------------------------|
| ↓ Ethosuximide                               | ↑ 20–50%                            |
| ↓ Valproate                                  | ↑ Two- to fourfold                  |
| ↓ Lamotrigine                                | ↑ Two- to fourfold                  |
| Topira Enzyme inducing AED                   | s→ 10-50%                           |
|                                              | Two- to fourfold                    |
| ↓ Felbamate                                  | ı 50%                               |
| ↓ Zonisamide                                 | 1 30-50 %                           |
| ↓ Oxcarbazepine                              | ↑ 25–40 %                           |
| Levetiracetam                                | No change                           |

#### Between AEDs

- Enzyme inhibitors
- Sodium valproate → ↑↑↑ lamotrigine
- Topiramate, oxcarbazepine → ↑ phenytoin

## UNDERLYING DISEASE CURRENT MEDICATION

**HEPATIC/ RENAL DYSFUNCTION** 

| AED           | Protein binding % | T/2   | Site of elimination                                  | Remarks                                                              |
|---------------|-------------------|-------|------------------------------------------------------|----------------------------------------------------------------------|
| Gabapentin    | 0                 | 4-6   | Renal, 100%<br>Not metabolize                        | Dose dependent absorption                                            |
| Lamotrigine   | 55                | 15-30 | Hepatic, 90% Glucoronidation                         | Clearance increased by enzyme inducing AEDs, reduced by VPA          |
| Topiramate    | 9-17              | 15-23 | Renal, 40-70%                                        | Fraction hepatically metabolized, increased by enzyme inducing AEDs  |
| Levetiracetam | 0                 | 6-8   | Renal, 66%;<br>hydrolysis of<br>acetamide gr, 34%    | Metabolism is nonhepatic hydrolysis                                  |
| Oxcarbazepine | 40                | 4-9   | Hepatic, 70% Hepatic conversion to active metabolite | Based upon 10 Hydroxy carbazepine (MHD), the major active metabolite |
| Zonisamide    | 40-60             | 24-60 | Hepatic, 70%                                         | Clearance increased by enzyme inducing AEDs                          |
| Pregabaline   | 0                 | 6     | Renal<br>Not metabolize                              |                                                                      |

| Effects                              | Older AEDs       | New AEDs              |
|--------------------------------------|------------------|-----------------------|
| Measurable increased in              | PHT              | _                     |
| free fraction with hypoalbuminemia   | VPA              |                       |
| Metabolism affected by               | PB               | GBP, LEV,             |
| renal disease                        |                  | TPM                   |
| Metabolism affected by liver disease | CBZ, PHT,<br>VPA | LTG, ZNS,<br>OXC, TGB |

CARDIAC CONDITIONS

### Using AEDs in cardiac conditions

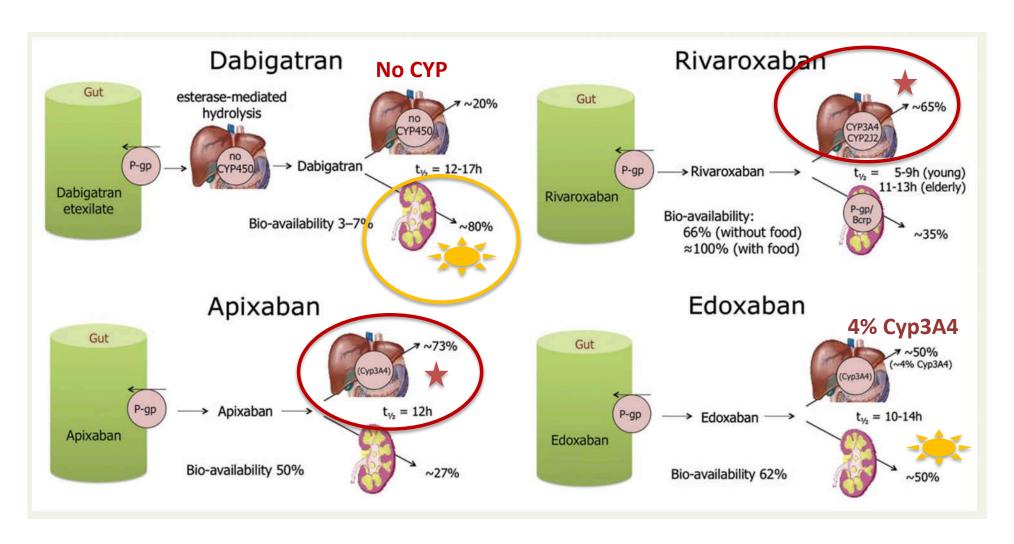
- Side effects
- Drug interaction

#### IV AEDs for established SE

|               | Route of administration      | Adult dose     |
|---------------|------------------------------|----------------|
| Phenytoin     | IV (<50 mg/min)              | 15-20 mg/kg    |
| Fosphenytoin  | IV (<100 mg PE/min)          | 15-20 mg PE/kg |
| Phenobarbital | IV (<100 mg/min)             | 10-20 mg/kg    |
| Valproate     | IV (50-100 mg/min)           | 20-30 mg/kg    |
| Levetiracetam | IV (100 mg/min)              | 2000-4000 mg   |
| Lacosamide    | IV (30-60 min/ up to 15 min) | 200-400 mg     |

### Interaction with cardiac drugs

- - ↓ digoxin level (upreg. P-gp)
- Enzyme inducers
  - → **V** calcium channel blocker level
    - ◆ beta blocker level
- Verapamil and diltiazem inhibits carbamazepine metabolism


#### Drug interaction with warfarin

- Metabolites through CYP3A4, 2C9
- Phenytoin, phenobarbital and carbamazepine reduce the concentration of warfarin by up to 50-65%
- Phenobarbital and carbamazepine also reduce the anticoagulation effects of warfarin metabolites
- Newer AEDs do not have significant interaction with anticoagulant

#### Interaction between AEDs and NOACs

- Intestinal absorption and renal elimination of NOACs are dependent on the intestinal and renal permeability glycoprotein (P-gp) efflux transporter protein system
- Some NOACs are substrates of the hepatic CYP3A4 enzymes
- Induction of P-gp or CYP3A4 might decrease serum NOAC levels, reduce anticoagulant effects and lead to an increase in embolic risk.

#### Absorption and metabolism of the different new anticoagulant drugs





### 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation

Jan Steffel<sup>1</sup>\*, Ronan Collins<sup>2</sup>, Matthias Antz<sup>3</sup>, Pieter Cornu<sup>4</sup>, Lien Desteghe<sup>5,6</sup>, Karl Georg Haeusler<sup>7</sup>, Jonas Oldgren<sup>8</sup>, Holger Reinecke<sup>9</sup>, Vanessa Roldan-Schilling<sup>10</sup>, Nigel Rowell<sup>11</sup>, Peter Sinnaeve<sup>12</sup>, Thomas Vanassche<sup>12</sup>, Tatjana Potpara<sup>13</sup>, A. John Camm<sup>14</sup>, and Hein Heidbüchel<sup>5,6</sup>

|                  | <b>Via</b> <sup>426, 539-541</sup>                  | Dabigatran<br>etexilate | Apixaban               | Edoxaban           | Rivaroxaban |
|------------------|-----------------------------------------------------|-------------------------|------------------------|--------------------|-------------|
| P-gp substrate   |                                                     | Yes                     | Yes                    | Yes                | Yes         |
| CYP3A4 substrate |                                                     | No                      | Yes (≈25%)             | No (<4%)           | Yes (≈18%)  |
|                  | •                                                   | Drug                    |                        |                    |             |
| Brivaracetam     | -                                                   |                         | No relevant interac    | tion known/assumed |             |
| Carbamazepine    | Strong CYP3A4/P-gp induction;<br>CYP3A4 competition | -29% <sup>542</sup>     | -50% (SmPC)            | SmPC               | SmPC        |
| Ethosuximide     | CYP3A4 competition                                  |                         | No relevant interac    | tion known/assumed |             |
| Gabapentin       | ]-                                                  |                         | Nø relevant interac    | tion/known/assumed |             |
| Lacosamide       | -                                                   |                         | No relevant interac    | tion known/assumed |             |
| Lamotrigine      | P-gp competition                                    |                         | No relevant interac    | tion known/assumed |             |
| Levetiracetam    | P-gp induction; P-gp competition                    |                         |                        |                    |             |
| Oxcarbazepine    | CYP3A4 induction; P-gp competition                  |                         |                        |                    |             |
| Phenobarbital    | Strong CYP3A4/possible P-gp induction               |                         | SynPC                  | SmPC               | SmPC        |
| Phenytoin        | Strong CYP3A4/P-gp induction; P-gp competition      | SmPC 543                | SmPC                   | SmPC               | SmPC        |
| Pregabalin       | _                                                   |                         | No relevant interac    | tion known/assumed |             |
| Topiramate       | CYP3A4 induction; CYP3A4 competition                |                         |                        |                    |             |
| Valproic acid    | CYP3A4/P-gp induction/inhibition                    |                         |                        |                    | Ref 544     |
| Zonisamide       | CYP3A4 competition; weak P-gp inhibition            |                         | o relevant interaction | known/assumed (Sm  |             |

INFECTIOUS CONDITIONS

### Antibiotics/AEDs interaction

| Drug groups      | Drugs                                       | Effects on AEDs              |
|------------------|---------------------------------------------|------------------------------|
| Antibiotics      | Carbapenems                                 | ↓↓↓ VPA levels               |
|                  | Macrolides                                  | ↑ CBZ levels                 |
| Antifungals      | Fluconazole<br>Itraconazole<br>Ketoconazole | ↑ CBZ levels<br>↑ PHT levels |
| Tuberculostatics | Rifampicin                                  | ↓ PHT, CBZ, VPA, LTG levels  |
|                  | Isoniazid                                   | ↑ PHT, CBZ, VPA, LTG levels  |

#### Epilepsia Open

#### SHORT RESEARCH ARTICLE

#### Carbapenems and valproate: A consumptive relationship

\*†Peter Bede, ‡Diane Lawlor, ‡Damodar Solanki, and \*§Norman Delanty

Epilepsia Open, 2(1):107–111, 2017 doi: 10.1002/epi4.12030

| Case | Age | Sex    | Pre-meropenem<br>VPA dose | Last<br>pre-meropenem<br>VPA level | Duration of meropenem therapy | VPA measured<br>after initiation of<br>meropenem | VPA level<br>during meropenem<br>therapy | Patient<br>symptomatic of<br>low VPA | Intervention                             | Normalization of VPA level post-meropenem therapy |
|------|-----|--------|---------------------------|------------------------------------|-------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------|---------------------------------------------------|
| I    | 55  | Female | 800 mg BD                 | 19                                 | +14 days                      | 24 h                                             | 8                                        | Yes; seizures                        | Increased dose + bolus + alternative AED | RIP                                               |
| 2    | 42  | Male   | 600 mg BD                 | 41                                 | 10 days                       | 24 h                                             | <3                                       | No                                   | No                                       | 4 weeks                                           |
| 3    | 24  | Female | 600 mg TDS                | 45                                 | 3 days                        | 72 h                                             | 9                                        | Yes; seizures                        | Increased dose + bolus + alternative AED | RIP                                               |
| 4    | 42  | Male   | 625 mg BD                 | N/A                                | 24 + 7 days                   | Meropenem introduced first                       | 6                                        | Yes; seizures                        | Increased dose + bolus                   | 4 weeks                                           |
| 5    | 78  | Male   | 600 mg BD                 | 27                                 | 3 days                        | 72 h                                             | 9                                        | No, but intubated                    | Meropenem discontinued                   | RIP                                               |
| 6    | 25  | Male   | 1,300/1,200 mg            | 106                                | 7 days                        | 7 days                                           | H                                        | Yes; seizures                        | No                                       | Checked 2 months later                            |
| 7    | 69  | Female | 300 mg BD                 | 40                                 | 10 days                       | 72 h                                             | <3                                       | Yes; hypomania                       | Increased dose                           | 8 days                                            |

HIV INFECTION

#### Interaction between ARVs and AEDs

| ARV   | Protein binding (%) | Metabolism | Potential drugs that may have interaction with AEDs | AEDs that may have interaction with |
|-------|---------------------|------------|-----------------------------------------------------|-------------------------------------|
| NRTI  | Min- 38             | Gluc       | <b>↑</b> Zidovudine                                 | VPA                                 |
| NNRTI | 50-90               | CYP450     |                                                     |                                     |
| PI    | >99                 | CYP450     | <b>↓</b> Lopinavir/ Ritonavir                       | PHT                                 |

#### SPECIAL REPORT

### Antiepileptic drug selection for people with HIV/AIDS: Evidence-based guidelines from the ILAE and AAN

\*†Gretchen L. Birbeck, ‡Jacqueline A. French, §Emilio Perucca, ¶David M. Simpson, #Henry Fraimow, \*\*Jomy M. George, ††Jason F. Okulicz, ‡‡David B. Clifford, §§Houda Hachad, and §§René H. Levy for the Quality Standards subcommittee of the American Academy of Neurology and the ad hoc task force of the Commission on Therapeutic Strategies of the International League Against Epilepsy

#### Recommendations

- AED–ARV administration may be indicated in up to 55% of people taking ARVs.
- Patients receiving phenytoin may require a lopinavir/ritonavir (PI) dosage increase of approximately 50% to maintain unchanged serum concentrations (Level C: one class II study).
- Patients receiving valproic acid may require a zidovudine (NRTI) dosage reduction to maintain unchanged serum zidovudine concentrations (Level C).
- Coadministration of valproic acid and efavirenz (NNRTI) may not require efavirenz dosage adjustment (Level C: one class II study).

#### Recommendations

It may be important to avoid enzyme inducing AEDs in people on ARV regimens that include protease inhibitors or non nucleoside reverse transcriptase inhibitors because pharmacokinetic interactions may result in virologic failure, which has clinical implications for disease progression and development of ARV resistance. If such regimens are required for seizure control, patients may be monitored through pharmacokinetic assessments to ensure efficacy of the ARV regimen (Level C: one class II study).

TRANSPLANT PATIENTS

### Using AEDs in transplant patients

- CBZ, oxcarbazepine, PB, and PHT may reduce cyclosporine, tacrolimus, and corticosteroid blood levels with a delayed effect of up to 10 days.
- Azathioprine, mycophenolate mofetil, and OKT3 metabolism are not significantly affected by AEDs.

**ONCOLOGIC CONDITIONS** 

#### Potentials interaction between AEDs and chemotherapy

- Enzyme inducing AEDs have been shown to have effects on levels of chemotherapy that metabolite through CYP 450
- Taxanes, vinca alkaloids, methotrexate, teniposide, and camptothecin analogues such as irinotecan
- Tyrosine kinase inhibitors, target therapy

#### Effects of AEDs on chemotherapy metabolism

| Group                       | AEDs   | CTD                    | Met | Factor changes in metabolism |
|-----------------------------|--------|------------------------|-----|------------------------------|
| Alkylating agents           | EIAEDs | Cyclophosphamide       | CYP | CI û 210%                    |
| Taxanes                     | EIAEDs | Docetaxel<br>Pacitaxel | CYP | CI û 150%                    |
| Antimetabolites             | EIAEDs | Methotrexate           |     | AUC ↓ 58%                    |
| Vinca alkaloids             | EIAEDs | Vincristine            | CYP | CI û 160%                    |
| Camtothecin derivatives     | EIAEDs | Irinotecans            | CYP | CI û 200-235%                |
|                             | VPA    | Irinotecans            |     | CI û 175%                    |
|                             | EIAEDs | Topotecans             | CYP | CI û 145%                    |
| Topoisomerase II inhibitors | EIAEDs | Etoposide              | CYP | CI û 145-175%                |
|                             | EIAEDs | Teniposide             | CYP | CI û 200-245%                |

Current Pharmaceutical Design 2017; 23: 6464-87

#### Effects of AEDs on tyrosine kinase inhibitors

|                              |       | Drugs                   | AEDs   | Target                   | Met | Factor changes in metabolism |
|------------------------------|-------|-------------------------|--------|--------------------------|-----|------------------------------|
|                              | MM    | Bortezomib              | EIAEDs | Proteosome inhibitor     | CYP | CI û 275%                    |
| CML, ALL                     | (Ph+) | Dasatinib               | EIAEDs | SCR, Bcr-Abl             | CYP | AUC ↓ 45%                    |
| NS                           | CLC   | Gefitinib               | EIAEDs | EGFR                     | CYP | AUC ↓ 45-63%                 |
| CML, ALL (<br>GIST           | Ph+)  | Imatinib                | EIAEDs | Bcr-Abl, c-kit,<br>PDGFR | CYP | CI û 342-413%                |
| HER-2 +ve<br>metas breast CA |       | Lapatinib               | EIAEDs | EGFR, HER2               | CYP | CI û 883%                    |
|                              |       | Evorolimus<br>Sirolimus | EIAEDs | mTOR                     | CYP | AUC ↓ 45%                    |
|                              |       | Sorafenib               | EIAEDs | c-kit, PDGFR, RAF        | CYP | AUC                          |
|                              |       | Tamoxifen               | EIAEDs | Estrogen receptor        | CYP | Dose                         |

Neuro-Oncology Practice 2016; 3: 245–260

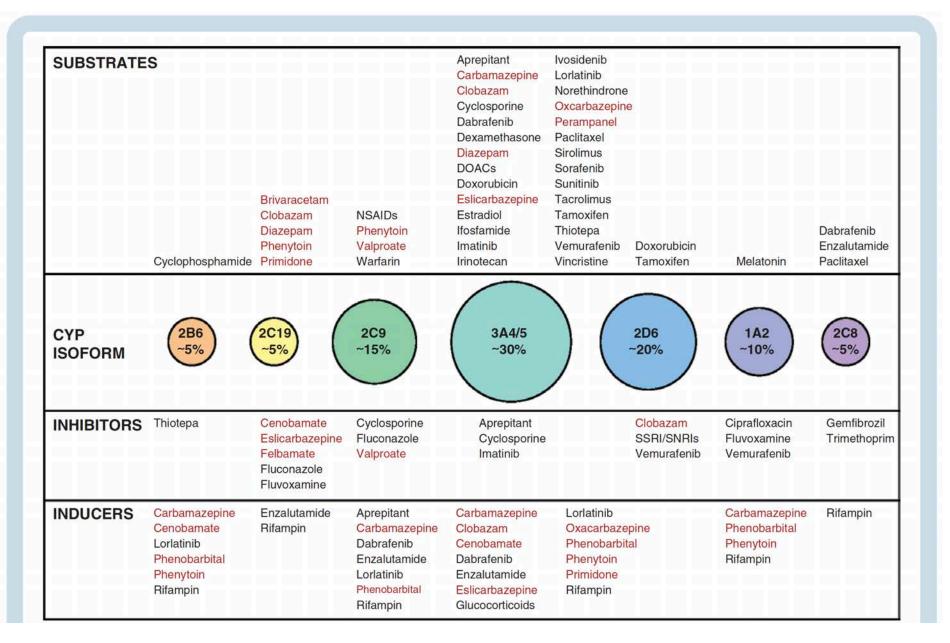
#### Effects of AEDs on steroid metabolism

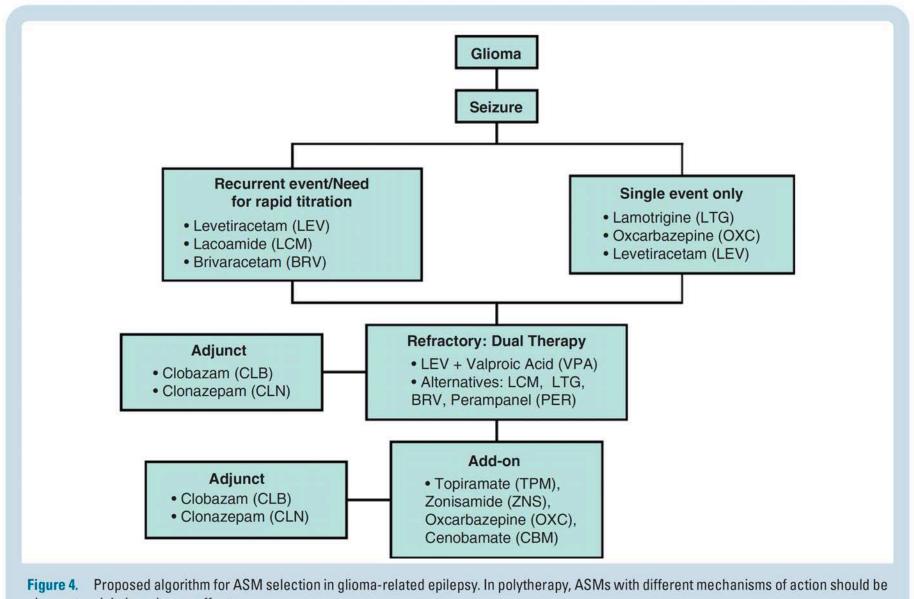
| AED                  | Steroid            | No. of Patients | Change in Steroid Activity | Factor of Change | Reference                     |
|----------------------|--------------------|-----------------|----------------------------|------------------|-------------------------------|
| Carbamazepine        | Prednisolone       | 6               | Cl↑                        | 1.41             | Bartoszek, 1987 <sup>96</sup> |
| 8.                   |                    |                 | T 1/2 ↓                    | 0.64             |                               |
| Phenobarbital        |                    | 6               | Cl ↑                       | 1.79             | Bartoszek, 1987 <sup>96</sup> |
|                      |                    |                 | T 1/2 ↓                    | 0.44             |                               |
| Phenytoin            |                    | 2               | Cl ↑                       | 1.77             | Bartoszek, 1987 <sup>96</sup> |
|                      |                    |                 | T 1/2 J                    | 0.71             | 77502                         |
| Carbamazepine        | Methylprednisolone | 5               | Cl ↑                       | 3.09             | Bartoszek, 1987 <sup>96</sup> |
|                      |                    |                 | T 1/2 ↓                    | 0.46             |                               |
| Phenobarbital        |                    | 5               | Cl ↑                       | 4.42             | Bartoszek, 1987 <sup>96</sup> |
|                      |                    |                 | T 1/2 ↓                    | 0.46             |                               |
| Phenytoin            |                    | 2               | Cl ↑                       | 5.79             | Bartoszek, 1987 <sup>96</sup> |
|                      |                    |                 | Τ 1/2 ↓                    | 0.29             |                               |
| Phenytoin            | Dexamethasone      | 15              | Cl↑                        | 2.93             | Chalk, 1984 <sup>97</sup>     |
| · <del>···</del> ··· |                    |                 | T 1/2 ↓                    | 0.54             |                               |
| Phenytoin            |                    | 6               | Plasma Conc ↓              | 0.5              | Wong, 1985 <sup>98</sup>      |

Abbreviations: bid, bis in die; CBZ, carbamazepine; EIAEDs, enzyme-inducing anti-epileptic drugs; PB, phenobarbital; PCV: procarbazine, CCNU, vincristine; PHT, phenytoin; VPA, valproic acid; Cl, clearance; T  $\frac{1}{2}$ , plasma drug elimination half-life; AUC, area under time-concentration curve; MTD, maximum tolerated dose; nEI, MTD without EIAEDs; EI, MTD with EIAEDs and corresponding Cl, T  $\frac{1}{2}$ , or AUC.

Neuro-Oncology Practice 2016; 3: 245–260

#### **Neuro-Oncology**


XX(XX), 1-18, 2023 | https://doi.org/10.1093/neuonc/noad154 | Advance Access date 12 September 2023


Brain tumor-related epilepsy management: A Society for Neuro-oncology (SNO) consensus review on current management

Edward K. Avila<sup>†,o</sup>, Steven Tobochnik<sup>†,o</sup>, Sara K. Inati<sup>o</sup>, Johan A. F. Koekkoek<sup>o</sup>, Guy M. McKhann<sup>o</sup>, James J. Riviello<sup>o</sup>, Roberta Rudà, David Schiff<sup>o</sup>, William O. Tatum<sup>o</sup>, Jessica W. Templer<sup>o</sup>, Michael Weller, and Patrick Y. Wen<sup>o</sup>

All author affiliations are listed at the end of the article

https://doi.org/10.1093/neuonc/noad154





chosen to minimize adverse effects.

PSYCHIATRIC COMORBIDITIES

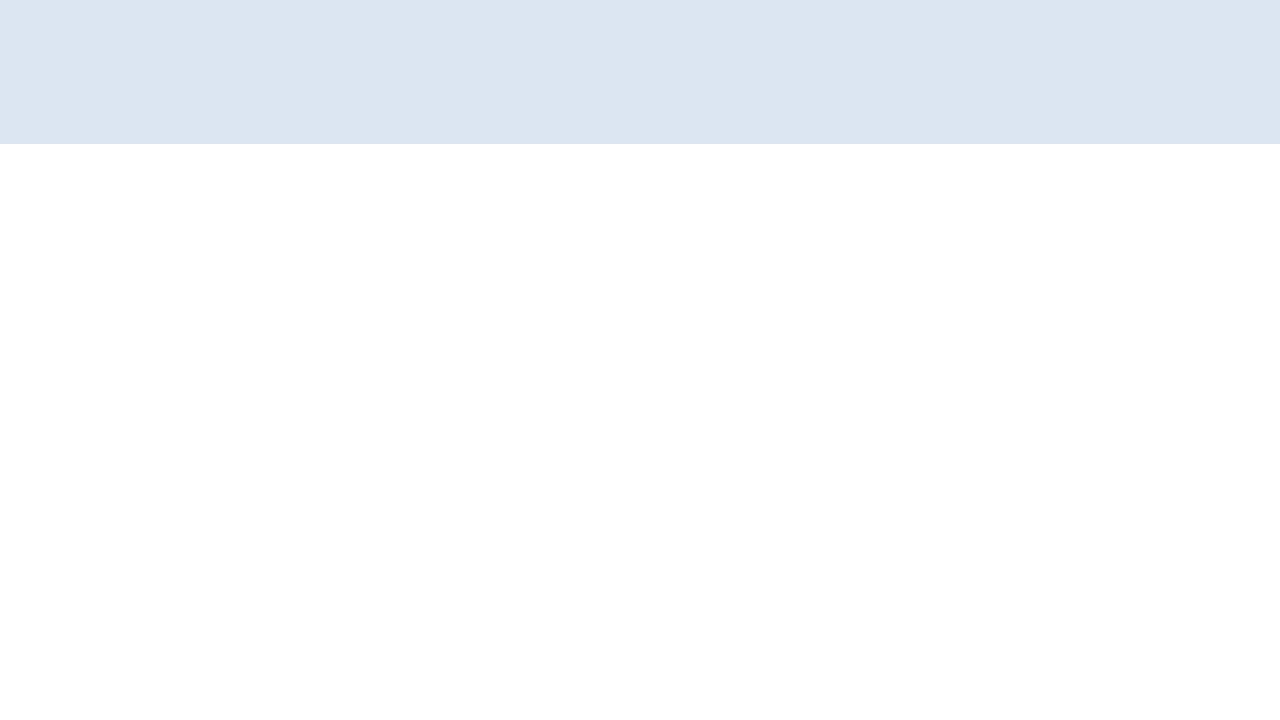
## Consider about psychiatric side effects in pts. with psychiatric comorbidities

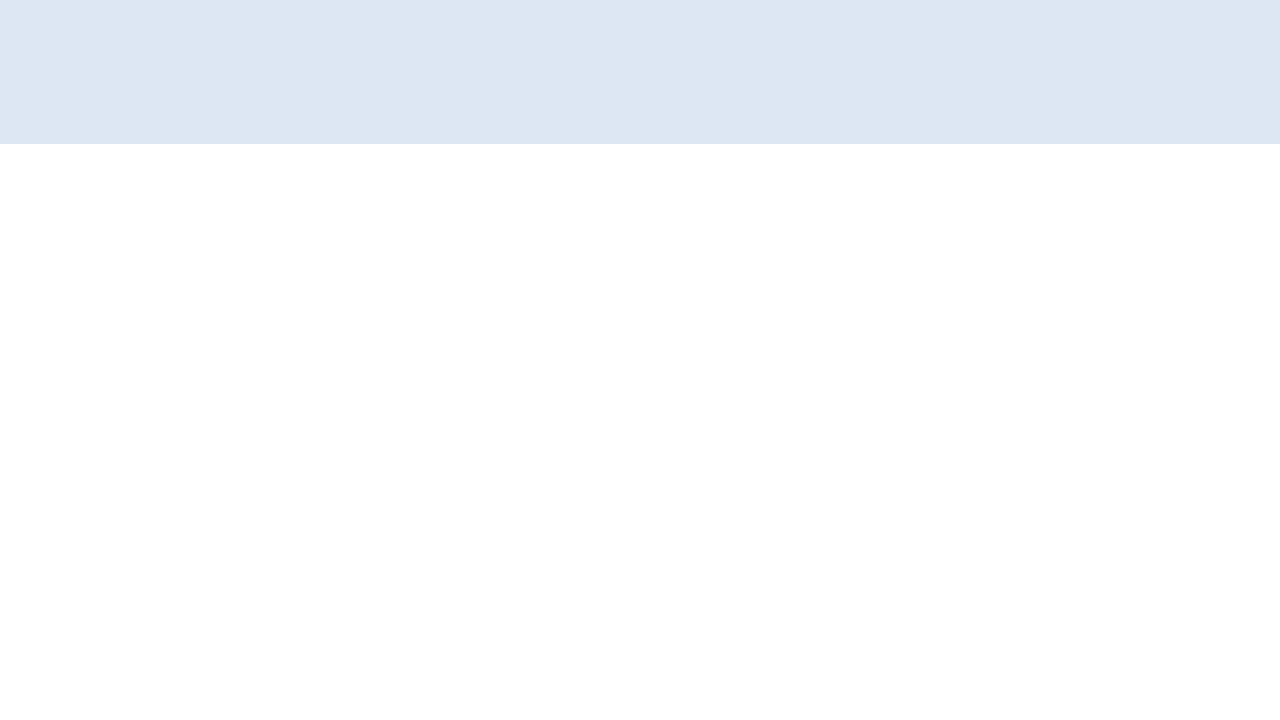
| Psychiatric comorbidities          | Avoid                                            | Consider                   |
|------------------------------------|--------------------------------------------------|----------------------------|
| Mood lability/<br>bipolar disorder | -                                                | LTG, CBZ, OXC,<br>PHT, VPA |
| Anxiety                            | FLB, LEV, LTG,<br>TGB                            | BZD, GBP, PBG              |
| Depression                         | Barbiturates, LEV,<br>PGB, TGB, TPM,<br>VGB, ZNS | LTG                        |
| Psychosis                          | ETX, FLB, LEV,<br>PHT, TGB, TPM,<br>VGB, ZNS     | _                          |

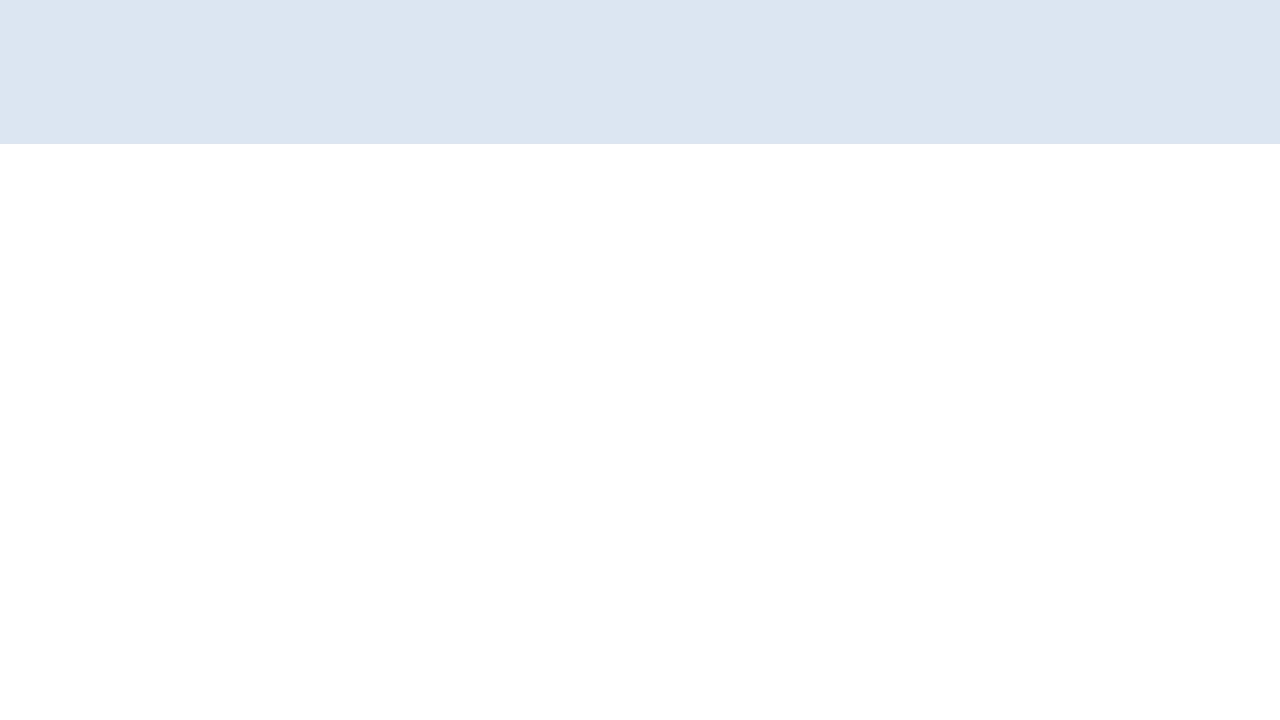
Perucca P & MulaM. Epilepsy Behav 2013;26:440-9

#### Which medications?

- ลักษณะการชักและประเภทของโรคลมชักของผู้ป่วย
- การบริหารยา
- ผลข้างเคียงของยากันชัก
- Drug interaction กรณีที่ผู้ป่วยได้ยาหลายชนิดพร้อมกัน
- Special situations/ other comorbidities
  - Reproductive age
  - Elderly
  - Hepatic impairment
  - Renal impairment


#### **AEDs**


- Which AEDs are available?
- Cost
- Experience


# Patient's profile

- Type of seizures
- Age
- Weight
- Occupation
- Underlying diseases
- Current medication
- Psychological profiles

Drug administration
Prone to which side effects
Potential drug interaction





