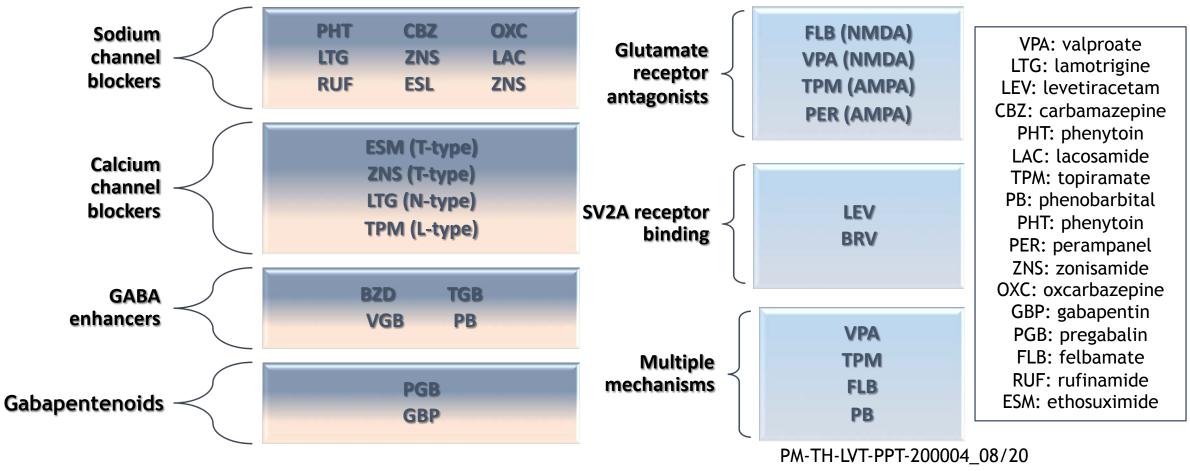
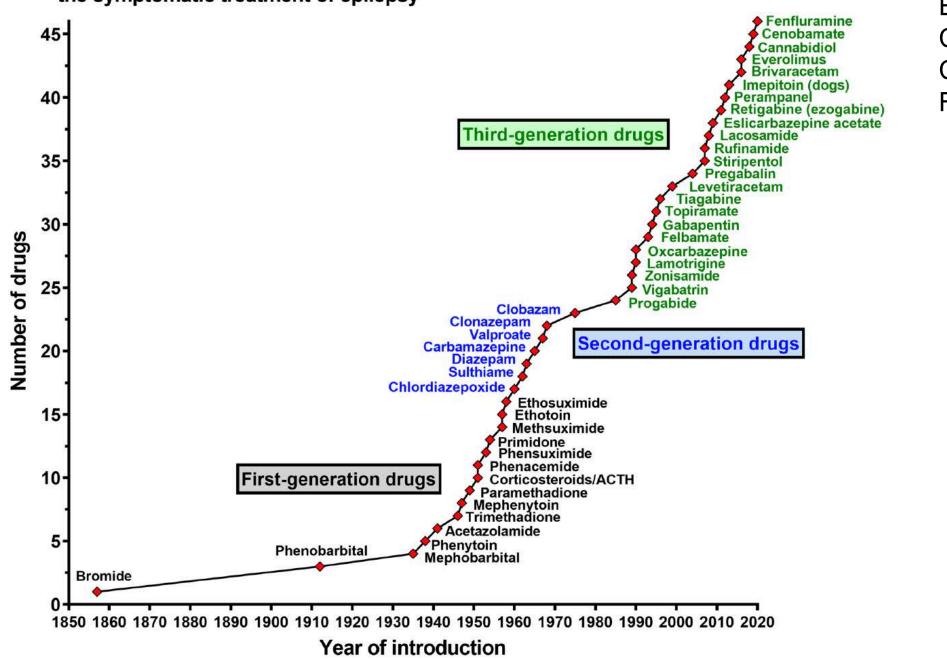


Special Considerations in Special Epilepsy Populations


Kanokwan Boonyapisit, MD. Department of Medicine

Siriraj Hospital



Mechanisms of action of ASMs

Loscher W, et al. CNS Drugs 2016;30:1055-77. 2. Stafstrom, C. Current opinion in Neurology 2010, 23:157-163.

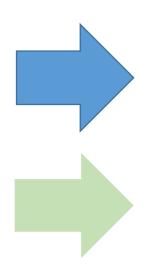
Antiseizure medications available for the symptomatic treatment of epilepsy

Everolimus Cannabidiol Cenobamate Fenfluramine

Which medications?

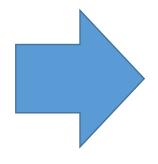
- ลักษณะการชักและประเภทของโรคลมชักของผู้ป่วย
- การบริหารยา
- ผลข้างเคียงของยากันชัก
- Drug interaction กรณีที่ผู้ป่วยได้ยาหลายชนิดพร้อมกัน
- Special situations/ other comorbidities
 - Reproductive age
 - Elderly
 - Hepatic impairment
 - Renal impairment

AEDs	 Which AEDs are available? Cost Experience
Patient's profile	 Type of seizures Age Weight Occupation Underlying diseases Current medication Psychological profiles


Drug administration Prone to which side effects Potential drug interaction

Selecting ASMs in special populations

- Special issues in this population
- Side effects that are most concerned in this population
- Drug interaction issues in this population


• 23 year-old woman with JME

Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel

 28 year-old married woman with JME, who is planning to have children

Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel

• What to consider in this case after delivery a baby?

• 19 year-old man with JME

Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel

戀 Medicines & Healthcare products Regulatory Agency

Valproate: organisations to prepare for new regulatory measures for oversight of prescribing to new patients and existing female patients

Date of Issue:	28 November 2023	Refe	erence No:	N	atPSA/2023/013	3/MHRA
	on by: Integrated Care Boards (in I					
	alth and Social Care Trusts (in Nor				//	
	nd complex National Patient Safety Alert. Integrated Care Boards in England, Heal			inate	d by an executive le	ead for
Social Care Trusts in No	orthern Ireland, alongside the Chief Pharm	acist	(or equivalent) and sup		The reg	ulator
	n the prescribing of valproate and clinical I nd sexual health, and general practice, wit				medicin	
Explanation of ide	ntified safety issue:	A	ctions required		A.	Valp
	ganisations to put a plan in place to		hen: To begin as soon			fema
	ory measures for sodium valproate, ate semisodium (valproate). This follows	31 1.	January 2024 Designate a new or			
a comprehensive review	v of safety data, advice from the	II''	implementation of th			inde
Commission on Human liaison with clinicians an	Medicines and an expert group, and of organisations		providers, with over:			othe
	la organisations.		This group should in a. An appointed cha			oune
	icant risk of serious harm to a baby after		the actions in th			com
	n pregnancy, these measures aim to r used if other treatments are ineffective		b. Representation f			appl
or not tolerated, and that	t any use of valproate in women of		specialities nam departments.			appl
	ho cannot be treated with other nce with the Pregnancy Prevention		c. A mechanism by			
	en these and other risks of valproate,		informed by pati		Б	A+ +6
	m to reduce initiation of valproate to only	2.	The group should by		В.	At th
in patients for whom no	other therapeutic options are suitable.	2.	The group should be progress towards:			child
The regulatory change i	n January 2024, for <u>oral valproate</u>		a. Updating all loca			
medicines, means that:	t not be started in new patients (male or		prescribing of va			using
	er than 55 years, unless two specialists		position, includi responsibilities (whic
independently	consider and document that there is no		organisations, a			
	or tolerated treatment, or there are		the risk forms			signa
apply.	sons that the reproductive risks do not		 b. Commissioning poods of the off 			subs
			needs of the aff people most at i			Subs
	nnual specialist review, women of otential and girls should be reviewed		c. Reviewing the n			the p
	I valproate Risk Acknowledgement Form.		with the existing			
	de the need for a second specialist		of childbearing d. Commissioning/def	termi	l. ning the local nath	ways of
	patient is to continue with valproate and nual reviews with one specialist unless		care for women of			
	tuation changes		relation to the pres	cribin	g and review of va	alproate.
			e. Planning for and id meet the identified			
	ent safety measures for valproate ling the valproate PPP for any girls and		implement the new			i anu
	potential. See <u>December 2022 Drug</u>				,	
	r information, including advice for	3.				
	other suitable therapeutic options before bate in patients younger than 55.		produce an Action and deadline that is commu			
	. , ,		ensure smooth impleme			
	al practice and pharmacy that teams cribe and dispense valproate but also		measures and to allow			
	nings and upcoming measures relating to		care of patients who are valproate, including on			
valproate with their patie	ents and consider together how it affects		and audit.	Jung	improvement, mo	moning
the patient's individual of	ircumstances. New educational materials					

the patient's individual circumstances. New educational materials should be integrated into local guidance to ensure patients are

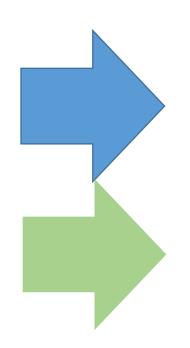
able to make an informed choice.

gulatory change in January 2024, for <u>oral valproate</u> ines, means that:

- Valproate must not be started in new patients (male or female) younger than 55 years, unless two specialists independently consider and document that there is no other effective or tolerated treatment, or there are compelling reasons that the reproductive risks do not apply.
- At their next annual specialist review, women of childbearing potential and girls should be reviewed using a revised valproate Risk Acknowledgement Form, which will include the need for a second specialist signature if the patient is to continue with valproate and subsequent annual reviews with one specialist unless the patient's situation changes

Morbidity and mortality risks associated with valproate withdrawal in young adults with epilepsy

Gashirai K. Mbizvo,^{1,2,3} Tommaso Bucci,^{1,4} Gregory Y. H. Lip^{1,5,†} and Anthony G. Marson^{2,3,†}

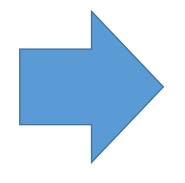

[†]These authors contributed equally to this work.

Valproate withdrawal was associated with significantly increased risks of emergency department attendance [HRs overall: 1.236 (CI 1.159–1.319)],

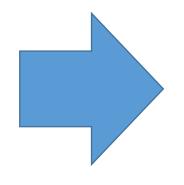
- hospital admission [HRs overall: 1.160 (CI 1.081–1.246)]
- falls [HRs overall: 1.179 (CI 1.041–1.336)]
- injuries [HRs overall: 1.095 (CI 1.021–1.174)]
- burns [HRs overall: 1.592 (CI 1.084–2.337)]
- new-onset depression [HRs overall 1.323 (CI 1.119-1.565)].

- 67 year-old man with CAD, AF, CKD, H/O post stroke epilepsy
- on warfarin

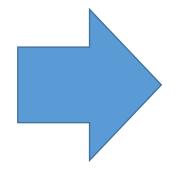
Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel


- 67 year-old man with CAD, AF, CKD, H/O post stroke epilepsy
- on apixaban

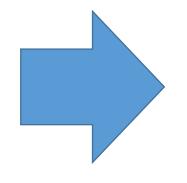
Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel


 72 year-old man was recently diagnosed with multiple myeloma, planning to start on bortezomib

Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel

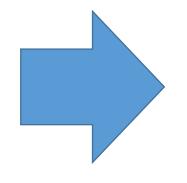

 23 year old woman with focal epilepsy from MTS, who was diagnosed with MG and was started on prednisolone and MMF

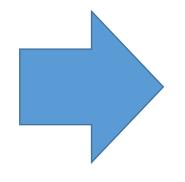
Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel


• 38 year old man with HIV

Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel

• 80 year old man with moderate AD


Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel


• 42 year old woman with anxiety, MDD

Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel

• 34 year old woman with focal epilepsy and migraine

Phenytoin	Lamotrigine
Carbamazepine	Topiramate
Phenobarbital	Levetiracetam
Sodium valproate	Pregabalin
	Zonisamide
	Lacosamide
	Perampanel

Women With Epilepsy

Women with epilepsy

- Side effects of antiepileptic medications
 - Cosmetic side effects
 - Weight issues
 - Osteoporosis
 - Teratogenic effects
- Contraception
- Pregnancy
- Lactation
- How to advise the patients

Skin and cosmetic side effects

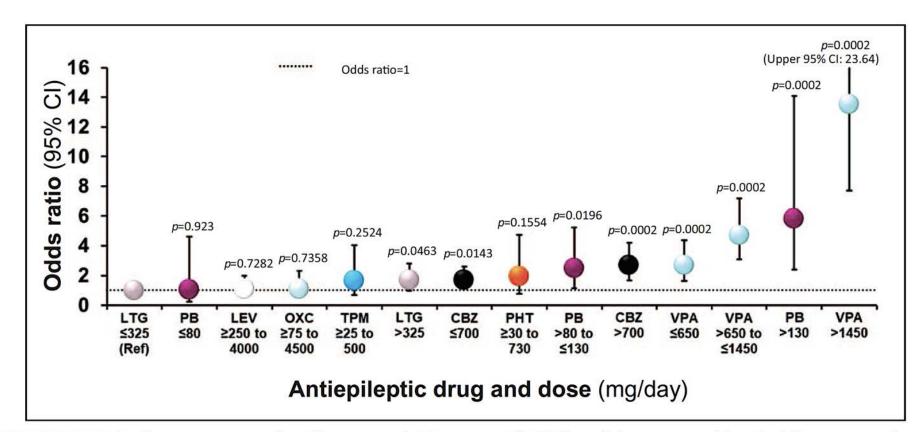
Side effects	AEDs	Time frame	Incidence	Reversible
Alopecia	VPA		0.5-4%/ up to 6%	
	CBZ, OXC	2-3 months		
Gum hypertrophy	PHT	Chronic use	10-40%	/
Hirsutism, hypertrichosis	PB			
	PHT			
Acne	VPA			
	PHT			
Dupuytren's Contracture, plantar fibromatosis	PB	Chronic use	Up to 5%	/

Gaitatzis A, Sander JW. CNS Drugs 2013; 27:435–455

Weight issues from AEDs

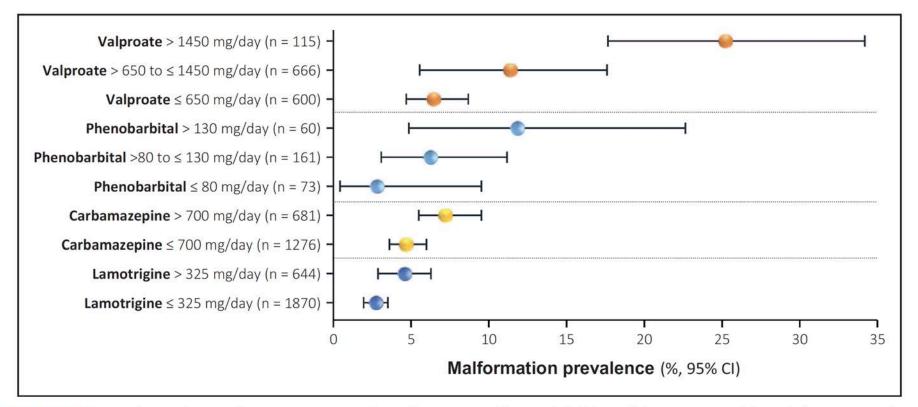
Weight Gain	Weight Neutral	Weight Loss
Valproate	Lamotrigine	Topiramate
Gabapentin	Levetiracetam (?)	Zonisamide
Carbamazepine	Phenytoin	Felbamate
Tiagabine (?)		
Vigabatrin		

Body weight changes with AEDs


Side effects	AEDs	Time frame	Incidence	Extent
Weight gain	VPA	2-3 months and may be continue	Up to 30-40%	1-3% of BW Up to 8% of BW (with high dose)
	GBP		23%	
	PGB		18%	
	RTG			
Weight loss	ТРМ	Stabilize after 12- 18 months	6-17% in leaflet (upto 60% in review)	Up to 7.5% of BW Dose dependent
	ZNS		3%	
	FBM			
	STP			

Gaitatzis A, Sander JW. CNS Drugs 2013; 27:435–455

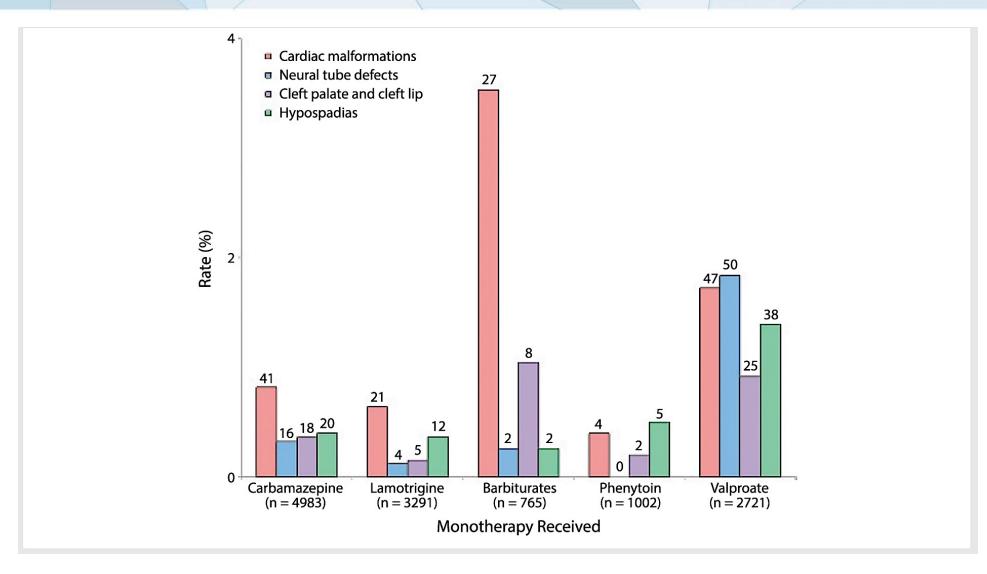
Malformation Risks of AEDs in Pregnancy


- No AED
- Monotherapy
- Polytherapy

2-3% 3.7%-6% 6.1%-15%

FIGURE 3. Risk of major congenital malformations (odds ratios with 95% confidence intervals) with different antiepileptic drug treatments compared with lamotrigine 325 mg/day or less. CBZ, carbamazepine; LEV, levetiracetam; LTG, lamotrigine; OXC, oxcarbazepine; PB, phenobarbital; PHT, phenytoin; Ref, reference; TPM, topiramate; VPA, valproate. Based on Data from [5^{••}].

Tomson T, Battino D, Bonizzoni E, et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. Lancet Neurol 2018; 17:530–538.


FIGURE 2. Dose dependency of major congenital malformations (%; and 95% confidence intervals) with four antiepileptic drug monotherapies. Based on Data from [5^{••}].

Tomson T, Battino D, Bonizzoni E, et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. Lancet Neurol 2018; 17:530–538.

Are there specific MCMs associated with specific AEDs?

AEDs	MCMs	Evidences
PHT	Cleft palate	1 Class II study
CBZ	Posterior cleft palate	1 Class II study
VPA	Neural tube defects, facial cleft	1 Class I study
PB	Cardiac malformations	2 Class III studies

Are there specific MCMs associated with specific AEDs?

Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child (Review)

Bromley R, Weston J, Adab N, Greenhalgh J, Sanniti A, McKay AJ, Tudur Smith C, Marson AG

Bromley R, et al. Cochrane Database of Systematic Reviews 2014, Issue 10. Art. No.: CD010236.

Conclusions

This review found that children exposed to VPA in the womb were at an increased risk of poorer neurodevelopment scores both in infancy and when school aged. The majority of evidence indicates that exposure in the womb to CBZ is not associated with poorer neurodevelopment. Data were not available for all AEDs that are in use or for all aspects of child neurodevelopment. This means decision making for women and their doctors is difficult. Further research is needed so that women and their doctors can make decisions based on research evidence about which medication is right for them in their childbearing years.

Bromley R, et al. Cochrane Database of Systematic Reviews 2014, Issue 10. Art. No.: CD010236.

Epilepsy and pregnancy

 ควรมีการให้ความรู้เกี่ยวกับโอกาสและความเสี่ยงที่จะเกิดความผิดปกติของเด็กใน ครรภ์สำหรับหญิงวัยเจริญพันธุ์ที่ต้องรับประทานยากันชัก เพื่อผู้ป่วยจะได้ สามารถวางแผนและตัดสินใจเรื่องการตั้งครรภ์ล่วงหน้าได้

Epilepsy and pregnancy

ควรวางแผนล่วงหน้าก่อนการตั้งครรภ์เนื่องจาก

- ในกรณีที่มารดาไม่มีอาการชักนานเกิน 2 ปีอาจพิจารณาหยุดยากันชักได้
- ในกรณีที่คุมอาการชักได้ดี และมารดารับประทานยากันชักมากกว่า 1 ชนิดอาจ
 พิจารณาลดขนาดยาหรือลดยาเหลือ 1 ชนิด เพื่อลดโอกาสการเกิดผลข้างเคียงต่อทารก
 ในครรภ์

Epilepsy and pregnancy

ควรวางแผนล่วงหน้าก่อนการตั้งครรภ์เนื่องจาก ควรหลีกเลี่ยงการใช้ยากันชักที่มี teratogenic effect สูง เช่น sodium valproate ในช่วงการตั้งครรภ์หากสามารถทำได้

Epileptic Disord 2022; 24 (6): 1020-1032

Breastfeeding while on treatment with antiseizure medications: a systematic review from the ILAE Women Task Force

Torbjörn Tomson¹, Dina Battino², Rebecca Bromley³, Silvia Kochen⁴, Kimford J. Meador⁵, Page B. Pennell⁶, Sanjeev V. Thomas⁷

Epileptic Disord 2022; 24:1021-32

Concentration of ASM in breastmilk

Low <10%	Approx. 30%	High > 30%
carbamazepine gabapentin levetiracetam oxcarbazepine phenytoin valproate clonazepam	lamotrigine topiramate brivaracetam lacosamide perampanel	ethosuximide phenobarbital zonisamide

Percentage of maternal serum concentration

Epileptic Disord 2022; 24:1021-32

- Prospective long-term follow-up studies of developmental outcomes among children that have been breastfed by mothers taking ASMs are sparse and have mainly involved children whose mothers were taking carbamazepine, lamotrigine, levetiracetam, phenytoin or valproate while breastfeeding.
- None of these studies indicated poorer outcome among breastfed children compared with those who were not breastfed

Although these studies have not indicated poorer outcome among breastfed children compared with those who were not breastfed, further data on long-term outcomes are needed to draw firm conclusions.

- It is concluded that breastfeeding should in general be encouraged in women taking ASMs, given the wellestablished benefits of breastfeeding with regard to both short- and long-term infant health in the general population.
- Counselling needs to be individualized including information on the current knowledge regarding the woman's specific ASM treatment.

Epileptic Disord 2022; 24:1021-32

Actions to reduce the risk of maternal seizures and risks associated with seizures

Reducing the risk of maternal seizures

- Optimize ASM dose, taking into account postdelivery related changes in pharmacokinetics as well as the possible need for intensified treatment due to sleep deprivation and other stressors
- Promote adherence to prescribed medication
- Reduce, as far as possible, sleep deprivation and other seizure-provoking factors; consider sharing the feeding, in particular, during night-time by having someone else share responsibility for feeding using a bottle of pumped breastmilk or formula

Reducing risks to the infant associated with maternal seizures

- Sit in a low position while breastfeeding (soft surface on the floor or low bed)
- Engage a "feeding buddy" to observe while feeding, in particular, during the first period after delivery until the situation has become stable regarding seizure control
- Do not bathe the infant alone

Epileptic Disord 2022; 24:1021-32

Drug interaction with OCPs

- AEDs that cause induction of CYP 3A4 increase metabolism of oral contraceptives resulting in failure of contraceptives.
- Potent enzyme inducing AEDs:
 - phenytoin, carbamazepine, primidone, phenobarbital.
- Less-potent enzyme inducing AEDs:
 - oxcarbazepine, lamotrigine
 - topiramate >200 mg.

	US Medical Eligibility Criteria for Contraceptive Use Category ^a								
EI-AEDs	COCs, Contraceptive Patch (Evra) and Ring (NuvaRing) ^b	POPb	Progestin Implant (Implanon) ^{b,c}	DMPA Injection (Depo-Provera) ^d	LNG-IUS (Mirena) ^d				
Carbamazepine (Tegretol)	3	3	2	1	1				
Felbamate (Felbatol)	NA	NA	NA	NA	NA				
Oxcarbazepine (Trileptal)	3	3	2	1	1				
Phenobarbital	NA	NA	NA	NA	NA				
Phenytoin (Dilantin)	3	3	2	1	1				
Primidone (Mysoline)	3	3	2	1	1				
Topiramate (Topamax)	3	3	2	1	1				
Rufinamide (Banzel)	NA	NA	NA	NA	NA				
Lamotrigine (Lamictal)	3	1	1	NA	1				

Guillemette T, et al. J Midwifery Womens Health 2012;57:290–5

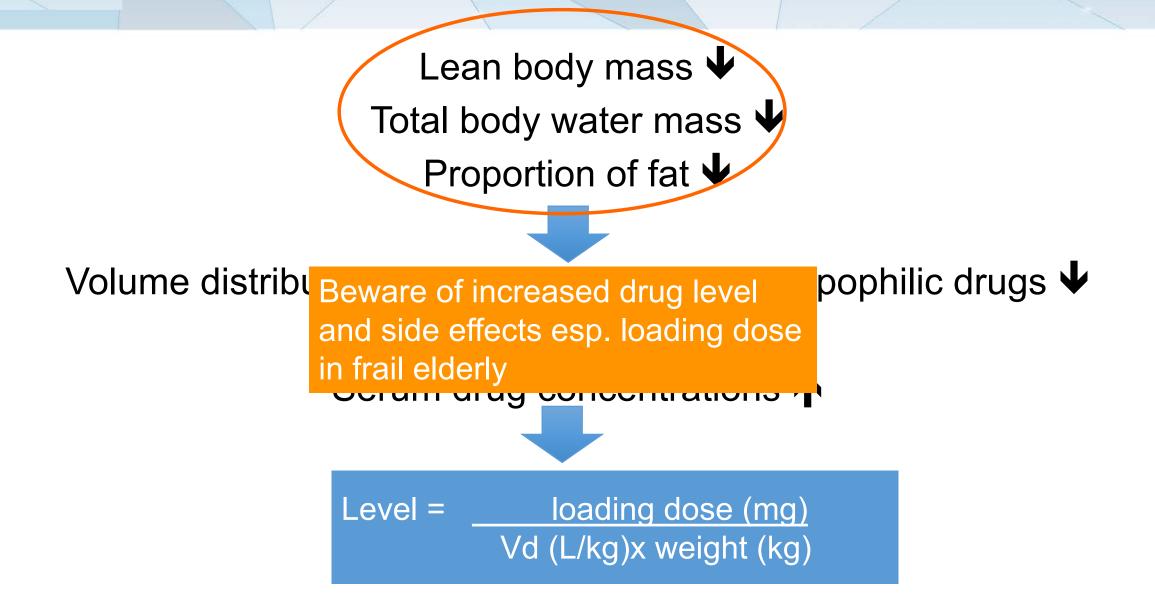
Options of contraception in patients taking EIAEDs

- Intrauterine device (IUD) is an excellent choice, and, given the safety and high contraceptive efficacy, an IUD is a favorable option
- <u>Levonorgestrel IUD</u> prevents pregnancy by local hormonally mediated changes and is unlikely to be impacted by enzymeinducing AEDs.
- Intramuscular medroxyprogesterone acetate is another long-acting reversible contraceptive that is likely adequate with coadministration of enzyme-inducing AEDs, because the concentration of progestin is high enough that efficacy is maintained but is often not considered a first-line option due to its side effect

Guillemette T, et al. J Midwifery Womens Health 2012;57:290–5

Women with epilepsy

Side effects of antiepileptic medications


- Cosmetic side effects
- Weight issues
- Osteoporosis
- Teratogenic effects
- Contraception
- Pregnancy
- Lactation
- How to advise the patients

Elderly with Epilepsy

Elderly

- Changes in pharmacokinetics of AEDs in the elderly
- Side effects of the ASMs, which elderly are more susceptible to occur eg. cognitive side effects
- Drug interaction
- Osteoporosis

Decreased Volume distribution: What should we do?

Pharmacokinetic changes in the elderly

- Decreased albumin level leads to increased free fraction of drugs in the body.
- Measurement of total serum drug concentration may not reflect the true unbound drug level.
- Reduce hepatic metabolism (evidence is still unclear) and reduce renal excretion with reduction of creatinine clearance

Caution of SE of ASMs in elderly

AEDs	Special precautions
Phenobarbital	Drowsiness, cognitive dysfunction May reduce effects of other drugs (enzyme inducer)
Phenytoin	Reduced metabolism and clearance Reduced protein binding → increased free fraction Increase incidence of adverse effects PHT level may be increased by amiodarone, cimetidine, isoniazid, trazodone May reduce effects of other drugs (enzyme inducer)
Carbamazepine	Increase incidence of adverse effects May reduce effects of other drugs (enzyme inducer) Hyponatremia
Sodium valproate	Drowsiness, parkinsonism Thrombocytopenia at higher dosage
Oxcarbazepine	Increase incidence of adverse effects Hyponatremia
Topiramate	Cognitive side effects at higher dosage (can be avoided by slow titration)

Interaction between AEDs and drugs for dementia

 Table 2.
 Interactions Between Medications for Alzheimer Disease and Antiepileptic Drugs^a

Alzheimer Medications	PHT	CBZ	PB	BZD	VPA	OXC	LEV	ТОР	GBP	LTG	ZNS	PGB
Donepezil (D)	\downarrow	\downarrow	\downarrow			\downarrow	_	_			_	_
Galantamine (G)	\downarrow	\downarrow	\downarrow		—	\downarrow	—	—	—		—	—
Rivastigmine (R)	none	none	none	none	none	none	none	none	none	none	_	none
Tacrine (T)	none	none	none	none	none	none	none	none	none	none	_	none
Memantine (M)	none	none	none	none	none	none	none	none	none	none	—	none

Jenssen S, Schere D. American Journal of Alzheimer's Disease & Other Dementias 2010;25:18-26

Elderly

- Changes in pharmacokinetics of AEDs in the elderly
- Side effects of the ASMs, which elderly are more susceptible to occur eg. cognitive side effects
- Drug interaction
- Osteoporosis

Patients with Underlying Medical Conditions

Medical conditions

- Side effects of the ASMs, which each conditions are more susceptible to occur eg. cognitive side effects
- Drug interaction
- Matching ASMs with other comorbidities

Effects on hepatic enzymes

Enzyme inhibitor	Enzyme inducer
Sodium valproate	Phenytoin
	Carbamazepine
	Phenobarbital
	Weak enzyme inducer at higher dose
	Oxcarbazepine
	Topiramate (>200mg)
	Perampanel (>8-12 mg)

Hepatic/ renal dysfunction

AED	Protein binding %	T/2	Site of elimination	Remarks
Gabapentin	0	4-6	Renal, 100% Not metabolize	Dose dependent absorption
Lamotrigine	55	15-30	Hepatic, 90% Glucoronidation	Clearance increased by enzyme inducing AEDs, reduced by VPA
Topiramate	9-17	15-23	Renal, 40-70%	Fraction hepatically metabolized, increased by enzyme inducing AEDs
Levetiracetam	0	6-8	Renal, 66%; hydrolysis of acetamide gr, 34%	Metabolism is nonhepatic hydrolysis
Oxcarbazepine	40	4-9	Hepatic, 70% Hepatic conversion to active metabolite	Based upon 10 Hydroxy carbazepine (MHD), the major active metabolite
Zonisamide	40-60	24-60	Hepatic, 70%	Clearance increased by enzyme inducing AEDs
Pregabaline	0	6	Renal Not metabolize	

Effects	Older AEDs	New AEDs
Measurable increased in	PHT	-
free fraction with hypoalbuminemia	VPA	
Metabolism affected by	PB	GBP, LEV,
renal disease		TPM
Metabolism affected by liver disease	CBZ, PHT, VPA	LTG, ZNS, OXC, TGB

Cardiac conditions

Using AEDs in cardiac conditions

- Side effects
- Drug interaction

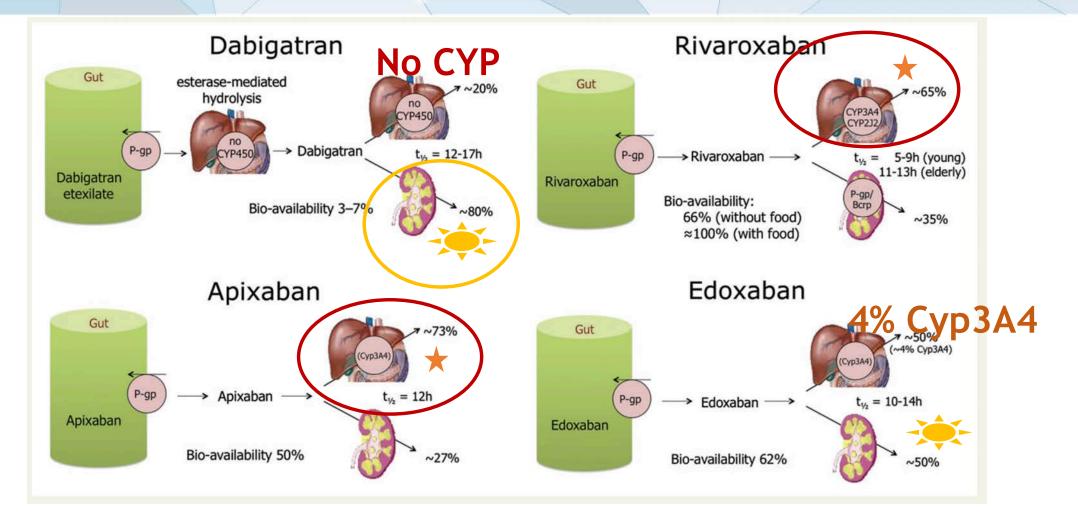
IV loading precautions in patients with cardiac conditions for ASMs with Na channel action

	Route of administration	Adult dose
Phenytoin	IV (<50 mg/min)	15-20 mg/kg
Fosphenytoin	IV (<100 mg PE/min)	15-20 mg PE/kg
Phenobarbital	IV (<100 mg/min)	10-20 mg/kg
Valproate	IV (50-100 mg/min)	20-30 mg/kg
Levetiracetam	IV (100 mg/min)	2000-4000 mg
Lacosamide	IV (30-60 min/ up to 15 min)	200-400 mg

Shorvon S. Curr Opin Neurol 2011;24:165–170

Interaction with cardiac drugs

- Phenytoin → ↓ amiodarone level (CYP induction)
 ↓ digoxin level (upreg. P-gp)
- Enzyme inducers
 - \rightarrow \checkmark calcium channel blocker level
 - ↓ beta blocker level
- Verapamil and diltiazem inhibits carbamazepine metabolism


Drug interaction with warfarin

- Metabolites through CYP3A4, 2C9
- Phenytoin, phenobarbital and carbamazepine reduce the concentration of warfarin by up to 50-65%
- Phenobarbital and carbamazepine also reduce the anticoagulation effects of warfarin metabolites
- Newer AEDs do not have significant interaction with anticoagulant

Interaction between AEDs and NOACs

- Intestinal absorption and renal elimination of NOACs are dependent on the intestinal and renal permeability glycoprotein (P-gp) efflux transporter protein system
- Some NOACs are substrates of the hepatic CYP3A4 enzymes
- Induction of P-gp or CYP3A4 might decrease serum NOAC levels, reduce anticoagulant effects and lead to an increase in embolic risk.

Absorption and metabolism of the different new anticoagulant drugs

DE-RA

2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation

Jan Steffel¹*, Ronan Collins², Matthias Antz³, Pieter Cornu⁴, Lien Desteghe^{5,6}, Karl Georg Haeusler⁷, Jonas Oldgren⁸, Holger Reinecke⁹, Vanessa Roldan-Schilling¹⁰, Nigel Rowell¹¹, Peter Sinnaeve¹², Thomas Vanassche¹², Tatjana Potpara¹³, A. John Camm¹⁴, and Hein Heidbüchel^{5,6}

Steffel J, et al. Europace 2021; 0:1-65

	Via ^{426, 539-541}	Dabigatran etexilate	Apixaban	Edoxaban	Rivaroxaban
P-gp substrate		Yes	Yes	Yes	Yes
CYP3A4 substrate		No	Yes (≈25%)	No (<4%)	Yes (≈18%)
		Drug			
Brivaracetam	-		No relevant interac	tion known/assumed	
Carbamazepine	Strong CYP3A4/P-gp induction; CYP3A4 competition	-29% ⁵⁴²	-50% (SmPC)	SmPC	SmPC
Ethosuximide	CYP3A4 competition		No relevant interac	tion known/assumed	
Gabapentin	-		No relevant interac	tion known/assumed	
Lacosamide	-		No relevant interac	tion known/assumed	
Lamotrigine	P-gp competition		No relevant interac	tion knowplassumed	
Levetiracetam	P-gp induction; P-gp competition				
Oxcarbazepine	CYP3A4 induction; P-gp competition				
Phenobarbital	Strong CYP3A4/possible P-gp induction		SmPC	SmPC	SmPC
Phenytoin	Strong CYP3A4/P-gp induction; P-gp competition	SmPC 543	SmPC	SmPC	SmPC
Pregabalin	-		No relevant interaç	tion known/assumed	
Topiramate	CYP3A4 induction; CYP3A4 competition				
Valproic acid	CYP3A4/P-gp induction/inhibition				Ref 544
Zonisamide	CYP3A4 competition; weak P-gp inhibition		to relevant interaction	Known/assumed (Sm	PC////////////////////////////////////

Infectious conditions

Antibiotics/AEDs interaction

Drug groups	Drugs	Effects on AEDs
Antibiotics	Carbapenems	$\downarrow\downarrow\downarrow$ VPA levels
	Macrolides	↑ CBZ levels
Antifungals	Fluconazole Itraconazole Ketoconazole	↑ CBZ levels ↑ PHT levels
Tuberculostatics	Rifampicin	\downarrow PHT, CBZ, VPA, LTG levels
	Isoniazid	\uparrow PHT, CBZ, VPA, LTG levels

SHORT RESEARCH ARTICLE

Carbapenems and valproate: A consumptive relationship

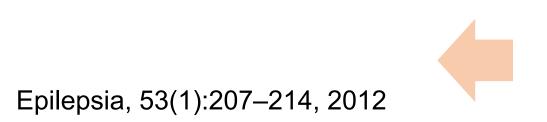
*†Peter Bede, ‡Diane Lawlor, ‡Damodar Solanki, and *§Norman Delanty

Epilepsia Open, 2(1):107–111, 2017 doi: 10.1002/epi4.12030

Case	Age	Sex	Pre-meropenem VPA dose	Last pre-meropenem VPA level	Duration of meropenem therapy	VPA measured after initiation of meropenem	VPA level during meropenem therapy	Patient symptomatic of Iow VPA	Intervention	Normalization of VPA level post-meropenem therapy
I	55	Female	800 mg BD	19	+14 days	24 h	8	Yes; seizures	Increased dose + bolus + alternative AED	RIP
2	42	Male	600 mg BD	41	10 days	24 h	<3	No	No	4 weeks
3	24	Female	600 mg TDS	45	3 days	72 h	9	Yes; seizures	Increased dose + bolus + alternative AED	RIP
4	42	Male	625 mg BD	N/A	24 + 7 days	Meropenem introduced first	6	Yes; seizures	Increased dose + bolus	4 weeks
5	78	Male	600 mg BD	27	3 days	72 h	9	No, but intubated	Meropenem discontinued	RIP
6	25	Male	1,300/1,200 mg	106	7 days	7 days	11	Yes; seizures	No	Checked 2 months later
7	69	Female	300 mg BD	40	10 days	72 h	<3	Yes; hypomania	Increased dose	8 days

Epilepsia Open 2017;2:107-11

HIV infection


Interaction between ARVs and AEDs

ARV	Protein binding (%)	Metabolism	Potential drugs that may have interaction with AEDs	AEDs that may have interaction with
NRTI	Min- 38	Gluc	↑Zidovudine	VPA
NNRTI	50-90	CYP450	Potential reaction with IAEDs	
PI	>99	CYP450	↓Lopinavir/ Ritonavir	PHT

SPECIAL REPORT

Antiepileptic drug selection for people with HIV/AIDS: Evidence-based guidelines from the ILAE and AAN

*†Gretchen L. Birbeck, ‡Jacqueline A. French, §Emilio Perucca, ¶David M. Simpson, #Henry Fraimow, **Jomy M. George, ††Jason F. Okulicz, ‡‡David B. Clifford, §§Houda Hachad, and §§René H. Levy for the Quality Standards subcommittee of the American Academy of Neurology and the ad hoc task force of the Commission on Therapeutic Strategies of the International League Against Epilepsy

Transplant patients

Using AEDs in transplant patients

- CBZ, oxcarbazepine, PB, and PHT may reduce cyclosporine, tacrolimus, and corticosteroid blood levels with a delayed effect of up to 10 days.
- Azathioprine, mycophenolate mofetil, and OKT3 metabolism are not significantly affected by AEDs.

Oncologic conditions

Potentials interaction between AEDs and chemotherapy

- Enzyme inducing AEDs have been shown to have effects on levels of chemotherapy that metabolite through CYP 450
- Taxanes, vinca alkaloids, methotrexate, teniposide, and camptothecin analogues such as irinotecan
- Tyrosine kinase inhibitors, targeted therapy

Vecht CJ, Wagner GL, Wilms EB. Lancet Neurol 2003;2:404–9.

Effects of AEDs on chemotherapy metabolism

Group	AEDs	CTD	Met	Factor changes in metabolism
Alkylating agents	EIAEDs	Cyclophosphamide	CYP	CI û 210%
Taxanes	EIAEDs	Docetaxel Pacitaxel	CYP	CI
Antimetabolites	EIAEDs	Methotrexate		AUC
Vinca alkaloids	EIAEDs	Vincristine	CYP	CI û 160%
Camtothecin derivatives	EIAEDs	Irinotecans	CYP	CI û 200-235%
	VPA	Irinotecans		CI û 175%
	EIAEDs	Topotecans	CYP	CI û 145%
Topoisomerase II inhibitors	EIAEDs	Etoposide	CYP	CI û 145-175%
	EIAEDs	Teniposide	CYP	CI û 200-245%

Current Pharmaceutical Design 2017; 23: 6464-87

Effects of AEDs on tyrosine kinase inhibitors

Drugs	AEDs	Target	Met	Factor changes in metabolism
Bortezomib	EIAEDs	Proteosome inhibitor	CYP	CI û 275%
Dasatinib	EIAEDs	SCR, Bcr-Abl	CYP	AUC I 45%
Gefitinib	EIAEDs	EGFR	CYP	AUC I 45-63%
Imatinib	EIAEDs	Bcr-Abl, c-kit, PDGFR	CYP	CI û 342-413%
Lapatinib	EIAEDs	EGFR, HER2	СҮР	CI û 883%
Evorolimus Sirolimus	EIAEDs	mTOR	СҮР	AUC 0, 45%
Sorafenib	EIAEDs	c-kit, PDGFR, RAF	CYP	AUC IJ 36-49%
Tamoxifen	EIAEDs	Estrogen receptor	CYP	Dose I 46%

Neuro-Oncology Practice 2016; 3: 245–260

Effects of AEDs on steroid metabolism

AED	Steroid	No. of Patients	Change in Steroid Activity	Factor of Change	Reference
Carbamazepine	Prednisolone	6	Cl ↑	1.41	Bartoszek, 1987 ⁹⁶
			T 1/2 ↓	0.64	
Phenobarbital		6	Cl ↑	1.79	Bartoszek, 1987 ⁹⁶
			T 1/2 ↓	0.44	
Phenytoin		2	Cl ↑	1.77	Bartoszek, 1987 ⁹⁶
			T 1/2 ↓	0.71	
Carbamazepine	Methylprednisolone	5	Cl ↑	3.09	Bartoszek, 1987 ⁹⁶
			T 1/2 ↓	0.46	
Phenobarbital		5	Cl ↑	4.42	Bartoszek, 1987 ⁹⁶
			T 1/2 ↓	0.46	
Phenytoin		2	Cl ↑	5.79	Bartoszek, 1987 ⁹⁶
			T 1/2 ↓	0.29	
Phenytoin	Dexamethasone	15	Cl ↑	2.93	Chalk, 1984 ⁹⁷
65			T 1/2 ↓	0.54	
Phenytoin		6	Plasma Conc ↓	0.5	Wong, 1985 ⁹⁸

Abbreviations: bid, bis in die; CBZ, carbamazepine; EIAEDs, enzyme-inducing anti-epileptic drugs; PB, phenobarbital; PCV: procarbazine, CCNU, vincristine; PHT, phenytoin; VPA, valproic acid; Cl, clearance; T $\frac{1}{2}$, plasma drug elimination half-life; AUC, area under time-concentration curve; MTD, maximum tolerated dose; nEI, MTD without EIAEDs; EI, MTD with EIAEDs and corresponding Cl, T $\frac{1}{2}$, or AUC.

Neuro-Oncology Practice 2016; 3: 245–260

Neuro-Oncology

XX(XX), 1–18, 2023 | https://doi.org/10.1093/neuonc/noad154 | Advance Access date 12 September 2023

Brain tumor-related epilepsy management: A Society for Neuro-oncology (SNO) consensus review on current management

Edward K. Avila^{†,}, Steven Tobochnik^{†,}, Sara K. Inati[®], Johan A. F. Koekkoek[®], Guy M. McKhann[®], James J. Riviello[®], Roberta Rudà, David Schiff[®], William O. Tatum[®], Jessica W. Templer[®], Michael Weller, and Patrick Y. Wen[®]

All author affiliations are listed at the end of the article

https://doi.org/10.1093/neuonc/noad154

SUBSTRATE	S			Aprepitant Carbamazepine Clobazam Cyclosporine Dabrafenib Dexamethasone Diazepam DOACs Doxorubicin	Ivosidenib Lorlatinib Norethindrone Oxcarbazepine Perampanel Paclitaxel Sirolimus Sorafenib Sunitinib			
	Cyclophosphamide	Brivaracetam Clobazam Diazepam Phenytoin Primidone	NSAIDs Phenytoin Valproate Warfarin	Eslicarbazepine Estradiol Ifosfamide Imatinib Irinotecan	Tacrolimus Tamoxifen Thiotepa Vemurafenib Vincristine	Doxorubicin Tamoxifen	Melatonin	Dabrafenib Enzalutamide Paclitaxel
СҮР	286	2019	2C9	3A4/5		2D6	1A2	2C8
CYP ISOFORM INHIBITORS	2B6 ~5%	Cenobamate	~15% Cyclosporine	Aprepitant		Clobazam	Ciprafloxacin	Gemfibrozil
ISOFORM	~5%	~5%	~15%	~30%		-20%	~10%	~5%

https://doi.org/10.1093/neuonc/noad154

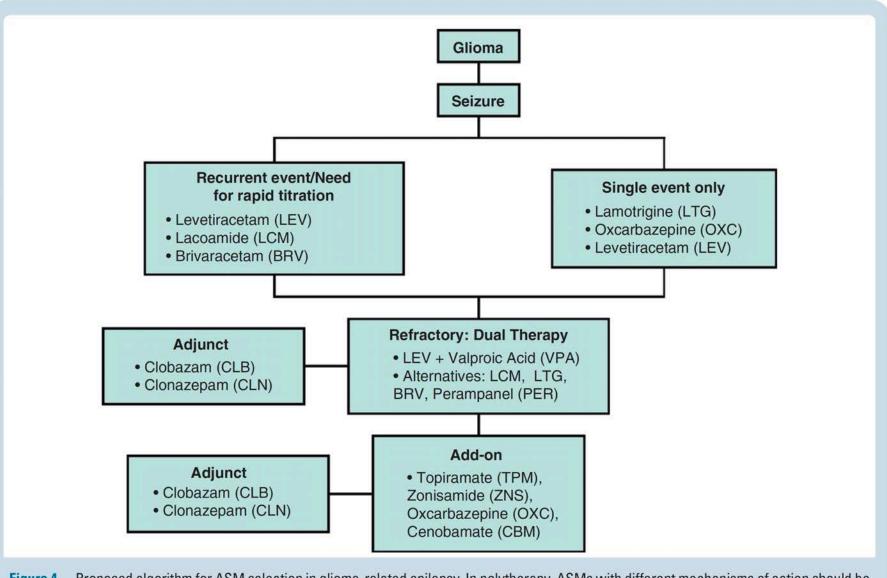


Figure 4. Proposed algorithm for ASM selection in glioma-related epilepsy. In polytherapy, ASMs with different mechanisms of action should be chosen to minimize adverse effects.

https://doi.org/10.1093/neuonc/noad154

Psychiatric comorbidities

Consider about psychiatric side effects in pts. with psychiatric comorbidities

Psychiatric comorbidities	Avoid	Consider
Mood lability/ bipolar disorder	-	LTG, CBZ, OXC, PHT, VPA
Anxiety	FLB, LEV, LTG, TGB	BZD, GBP, PBG
Depression	Barbiturates, LEV, PGB, TGB, TPM, VGB, ZNS	LTG
Psychosis	ETX, FLB, LEV, PHT, TGB, TPM, VGB, ZNS	-

Medical conditions

- Side effects of the ASMs, which each conditions are more susceptible to occur eg. cognitive side effects
- Drug interaction
- Matching ASMs with other comorbidities

Matching AEDs with other comorbidities

	Avoid/ caution	Prefer
Migraine		VPA, TPM
Mood lability/ bipolar disorder	-	LTG, CBZ, OXC, PHT, VPA
Pain		CBZ, PGB, GBP
Anxiety	FLB, LEV, LTG, TGB	BZD, GBP, PGB
Depression	Barbiturates, LEV, PGB, TGB, TPM, VGB, ZNS	LTG
On warfarin	Enzyme inducing AEDs	
On OCP	Enzyme inducing AEDs	
HLA 1502 +ve	CBZ	
Sulfa allergy	ZNS	

Perucca P & MulaM. Epilepsy Behav 2013;26:440-9

Matching AEDs with other comorbidities

	Avoid/ caution	Prefer
Obesity	VPA, PGB, GBP	TPM, ZNS
Cognitive dysfunction	PB, TPM, ZNS	LTG, LEV, OXC
Restless leg syndrome	-	GBP, PGB, CZP
Tremor	VPA	TPM, PER
Gait ataxia	CBZ, PHT	-
Parkinson disease	-	ZNS
Multiple concomitant drugs	Enzyme inducing AEDs	-

Park KM, Kim SE, Lee BI. Journal of Epilepsy Research 2019; 9: 14-26

AEDs	 Which AEDs are available? Cost Experience
Patient's profile	 Type of seizures Age Weight Occupation Underlying diseases Current medication Psychological profiles

Drug administration Prone to which side effects Potential drug interaction

Question

คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

THANK YOU FOR YOUR ATTENTION

