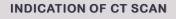


PUNJAMA LERTBUTSAYANUKUL, MD. RADIOLOGY DEPARTMENT NEUROLOGICAL INSTITUTE OF THAILAND

EPILEPSY

- From the beginning of the disease, brain imaging assists in reaching the correct diagnosis, selective initial treatments and estimating the prognosis for treatment response.
- For the patients with drug-resistant epilepsy, neuroimaging becomes more important when considering epilepsy surgery.
- Localizing the epileptogenic onset zone, optimizing seizure freedom and minimizing the risk of neurologic impairment.

NEUROIMAGING IN EPILEPSY

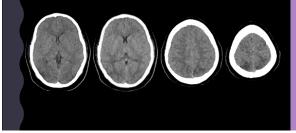

- Computed tomography (CT)
- Magnetic resonance imaging (MRI) : Structural and functional MRI (fMRI), MR perfusion
- EEG combined with fMRI (EEG/fMRI)
- Positron emission tomography (PET)
- Ictal and interictal single photon emission computed tomography (SPECT)
- Magnetoencephalography (MEG)
- Wada Test (Cerebral angiography)

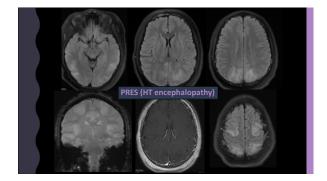
ANATOMIC NEUROIMAGING (MRI, CT)

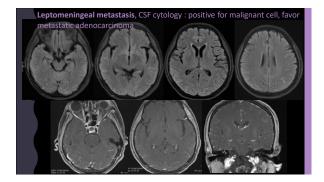
- Determination of the actual pathologic/structural lesion
- Determination of location and extent of the potential epileptogenic zone
- Surgical planning (type of resection or palliative surgery)
- Predicting operative outcome

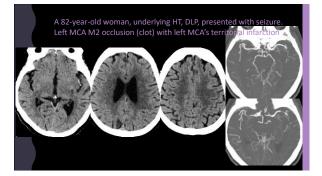
INDICATION OF CT SCAN

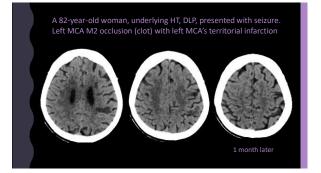
- Emergency/Acute situations
- New-onset seizure patients with symptoms (i.e. focal deficits, altered mental status, fever, trauma, persistent headache, history of cancer, anticoagulation, ventriculoperitoneal shunts, acquired immunodeficiency syndrome)
- New-onset seizures in elderly (acute stroke and tumors)
- Patients with MRI contraindication


- CT can detect some tumors, large arteriovenous malformations, stroke and calcified lesions.
- CT with contrast is indicated in cases with suspicion for infection or neoplasms, if MRI is unavailable.

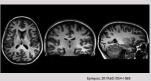

INDICATION OF MRI BRAIN


- Focal seizure, at any age
- Abnormal neurological examination (focal deficits, stigmata of neurocutaneous, cerebral malformation syndrome, developmental delay/arrest/regress)
- Generalized or unclassified seizures in the first year of life or in adulthood
- Difficulty obtaining seizure control with first-line AEDs
- Loss of seizure control or a change in the pattern of seizures


A 14-year-old boy with acute glomerulonephritis, HT and seizure (posterior reversible encephalopathy syndrome, **PRES**)



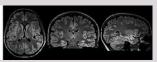
THE GOALS OF NEUROIMAGING IN PRESURGICAL EVALUATION


- To identify structural, and if possible, functional abnormalities
- To aid in formulating a syndromic or etiologic diagnosis
- To detect additional abnormalities
- To depict the relationship of the abnormalities to the eloquent regions of the brain (mapping of sensorimotor, language and memory functions)

HARMONIZED NEUROIMAGING OF EPILEPSY STRUCTURAL SEQUENCES (HARNESS-MRI PROTOCOL)

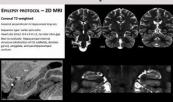
• High-resolution 3D T1W MRI :

for optimal evaluation of brain anatomy and morphology


EPILEPSY PROTOCOL – 3D MRI <u>TI-weighted</u> Sequence type; gradient echo Vasei site (mni): 1 × 1 × 1 Best to revalue: anatomy and morphology (volume, thickness, sullor graf shape, grey-white matter interface integrity)

HARMONIZED NEUROIMAGING OF EPILEPSY STRUCTURAL SEQUENCES (HARNESS-MRI PROTOCOL)

 High-resolution 3D FLAIR : for assessing signal anomalies, particular hyperintensities related to gliosis, enhancing the visibility of hyperintense cortical lesions


FLAIR Sequence type: turbo spin echo Voxel size (mm) 1 × k x 1 Best to evaluate: signal intensity Covert - Not sensitive in neonates and children months of age due to incomplete myelination

Epilepsia. 2019;60:1054-1068

HARMONIZED NEUROIMAGING OF EPILEPSY STRUCTURAL SEQUENCES (HARNESS-MRI PROTOCOL)

 High in-plane resolution 2D coronal T2W MRI : for assessing the hippocampal internal structure

(The images are acquired perpendicular to the long axis of the hippocampus, using submillimetric vaxel resolution Epilepia 2019/20.1054-1068

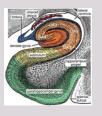
ETIOLOGY OF EPILEPSY

Etiology of epilepsy (ILAE 2017 classification)

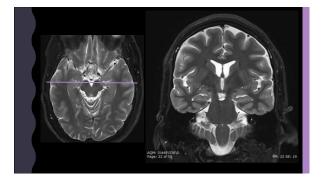
ightarrow structural, genetic, infectious, metabolic, immune, unknown

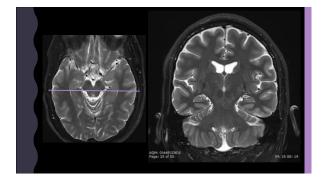
- Structural : hippocampal sclerosis, congenital malformation, stroke, tumor, infection, tuberous sclerosis (genetic)
- Genetic : autoimmune encephalitis, inborn errors of metabolism
- Metabolic : inborn errors of metabolism
- Infectious : neurocysticercosis, TB, SSPE, CMV

Cause	Age (yr)				
Cause		3-20	21-40	41-60	>60
Anoxia	Yes				_
Metabolic abnormalities or in- born error of metabolism	Yes				
Congenital or developmental malformations	Yes	Yes			
Infection	Yes	Yes			
Phakomatosis	Yes	Yes			
Primary generalized seizures		Yes			
Hippocampal sclerosis		Yes			
Trauma	Yes	Yes	Yes	Yes	
Vascular malformation			Yes		
Tumor			Yes	Yes	Yes
Cerebrovascular accident				Yes	Yes

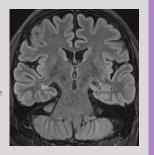

PATHOLOGIC ENTITIES OF EPILEPSY

- Malformation of cortical development
- Mesial temporal/hippocampal sclerosis
- Neoplasm
- Vascular abnormalities
- Gliosis and miscellaneous abnormalities


HIPPOCAMPAL SCLEROSIS


Hippocampus

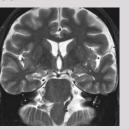
- curved structure on the medial aspect of the temporal lobe
- consisting of complex U-shaped layers of the dentate gyrus and cornu amonis, interlocked together
- cornu amonis : CA 1 through CA 4
- cornu amonis \rightarrow subiculum \rightarrow parahippocampal gyrus



MR FEATURES OF HIPPOCAMPAL SCLEROSIS

Principle hippocampal findings

- Hippocampal atrophy
 Signal alterations (hyperintense on T2WI and FLAIR)
- Loss of internal architecture



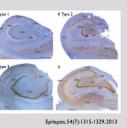
MR FEATURES OF HIPPOCAMPAL SCLEROSIS

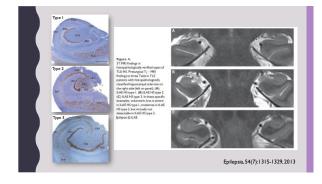
Secondary findings

- Temporal lobe

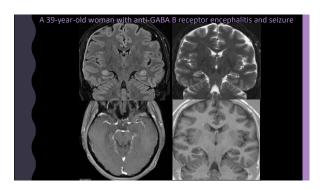
 Ipsilateral loss of hippocampal head
- digitations
- Dilation of temporal horn
- Temporal lobe atrophy
- Collateral WM atrophy
- Anterior temporal WM change

MR FEATURES OF HIPPOCAMPAL SCLEROSIS

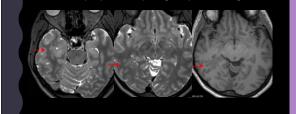

Secondary findings

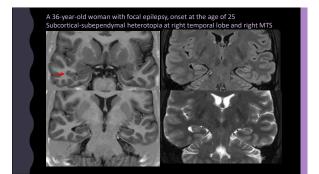

- Extratemporal lobe
- Fornix atrophy
- Mammillary body atrophy
- Thalamic atrophy
- Caudate atrophy

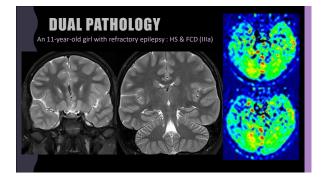



THE ILAE CLASSIFICATION OF HS IN PATIENTS WITH TLE

- HS ILAE type 1 = severe neuronal loss and gliosis predominantly in CA1 and CA 4 regions
- HS ILAE type 2 = CA 1 predominant neuronal cell loss and gliosis
- HS ILAE type 3 = CA 4 predominant neuronal cell loss and gliosis





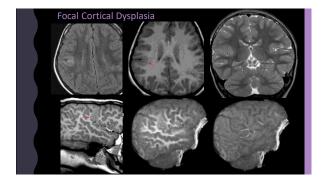


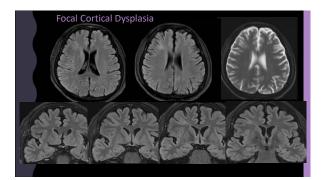
DUAL PATHOLOGY

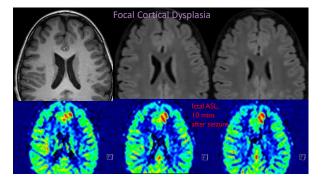
A 36-year-old woman with focal epilepsy, onset at the age of 25 Subcortical-subependymal heterotopia at right temporal lobe and right MTS

MR FEATURES OF MALFORMATIONS OF CORTICAL DEVELOPMENT

- Cortical thickening
- Blurring or indistinctness of gray-white matter junction
- Hyperintensity of gray matter
 Heterotopic GM, ependymal or
- Irregularity of gray-white matter junction subcortical
- Macrogyria
- Paucity of gyri (pachygyri)
- Polymicrogyria (multiple small gyri)
- CSF cleft and cortical dimple
- Altered sulcal morphology
- Radial bands
- Band heterotopia
- Transmantle heterotopia
- Hemispheric enlargement


FOCAL CORTICAL DYSPLASIA


MRI findings:


- cortical thickening
- blurring of WM-GM junction with abnormal architecture of subcortical layer
- · altered signal from WM with or without the penetration through cortex (transmantle sign)

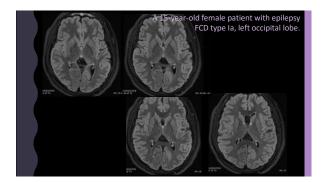
Pol J Radiol, 2012;77(2):35-43

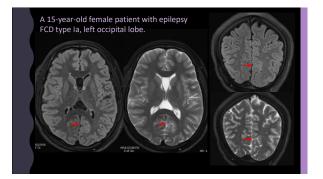
- altered signal from GM
- abnormal sulcal or gyral pattern
- segmental and/or lobar hypoplasia/atrophy

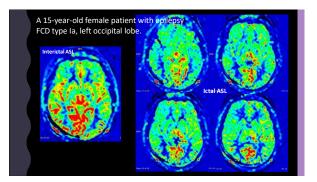
FOCAL CORTICAL DYSPLASIA

Table 2. New classification system of focal cortical dysplasia by Blumcke et al. 2011.

Type				Characteristic features		


- a focal cortical dysplasia with abnormal radial cortical famination b–focal cortical dysplasia with abnormal tangential 6-layer cortical lamin c–focal cortical dysplasia with abnormal radial and tangential cortical la
- a.
- a focal cortical dysplasia with dysmorphic neurons b focal cortical dysplasia with dysmorphic neurons and balloon cells
- a architectural distortion of certical layer in temporal lobe with hppocampal atrophy b architectural distortion of certical layer adjacent to gial or glionesennal tumor c architectural distortion of certical layer adjacent to ascular milliomation d architectural distortion of certical layer adjacent to other lesions acquired in early childhood such as trauma, bohe event, exceptualitis


The histopathology-based FCD classification update (new categories highlighted in gray) FCDI^{*} FCDIa abundant FCDIb abnormal FCDIc vertical and horizontal abnormalities layering FCDII* FCDIIa dysmorphic neurons FCDIIb dysmorphic neurons and balloon cells FCDIIIa cortical FCDIIIb cortical FCDIIIc cortical FCDIIId cortical FCDIII^{*} dyslamination dyslamination digent associated with adjacent to brain adjacent to vascular hippocampal sterosis White Matter^a mMCD^b with excessive heterotopic neurons^a mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE)^c No definite FCD Abnormality of cortical organization remains ambiguous and histopathological on findings not compatible with FCDI, II or III ^d Epilepsia. 2022;63:1899-1919

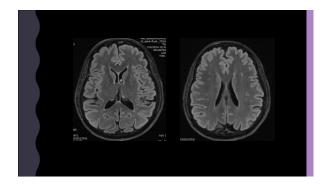

FCD TYPE I

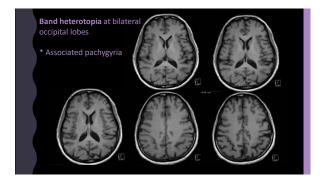
- Significant segmental or lobar hypoplasia/atrophy
- Often with reduced volume of subcortical WM, which may reveal increased signal on T2WI/FLAIR and decreased on T1WI/IR.
- Slight blurring of GM/WM junction
- Abnormal sulcal and gyral pattern
- Frequently found in the temporal lobe with coexist hippocampal atrophy (IIIa)

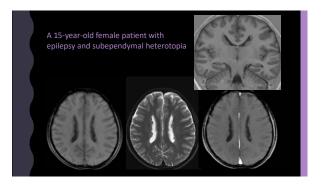
Pol J Radiol, 2012; 77(2): 35-43

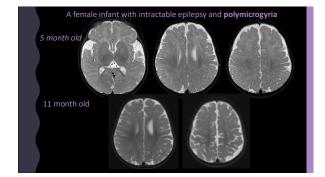
FCD TYPE II

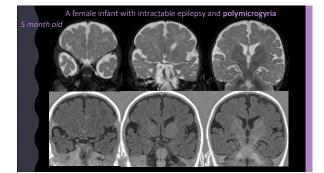
- Cortical thickening
- Marked blurring of GM/WM junction (more evident than in type I)
- An increase WM signal on T2WI, FLAIR (more evident than in type I) and decrease on T1WI
- Altered WM signal, often towards the ventricle (transmantle sign)
- Often abnormal sulci, gyri, which clearly visualized by surface 3D
- Perivascular space may be enlarged.
- More often found in extratemporal location, predilection toward frontal lobe

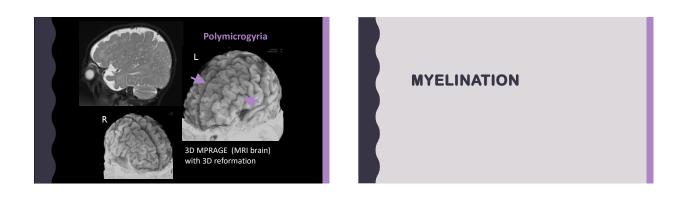

Pol J Radiol, 2012; 77(2): 35-43

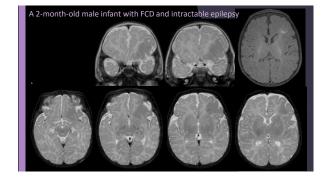

A 36-year-old woman with refractory seizure. FCD type IIa, left insular lobe.

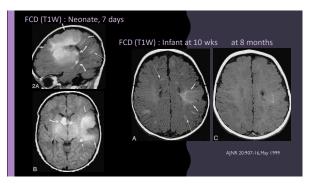


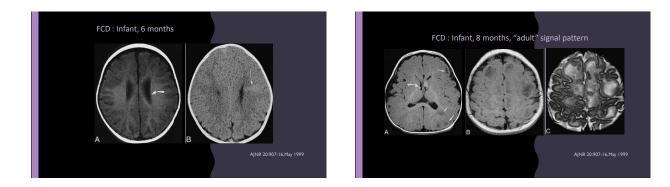


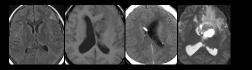












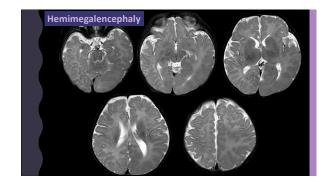


TUBEROUS SCLEROSIS

- Autosomal dominant genetic disease with hamartomas in multiple organs
- Clinical triad: mental retardation, epilepsy and

adenoma sebaceum

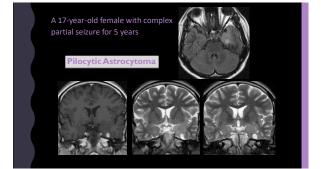
mTORopathies

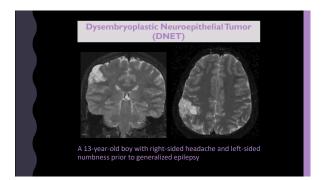

• Tuberous sclerosis complex (TSC)

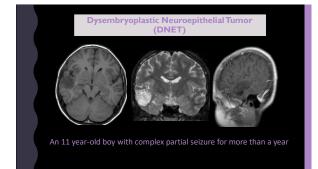
- Mutations in the TSC1 or TSC2 genes causes loss of normal inhibition of mTORC1, leading to cell overgrowth and disruptions in synaptogenesis.

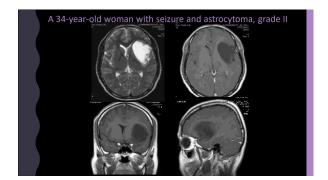
 $\,$ - Cortical malformations, subependymal giant cell astrocytoma (SEGAs) and drug-resistant epilepsy

mTORopathies

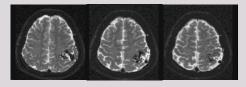

- Hemimegalencephaly : HME occurs following somatic mutation (AKT3, PI3K, PTEN, mTOR) leading to hyperactivation of mTOR pathway during brain development.
- Focal cortical dysplasia : Growing evidence for germline and somatic mations in the mTOR pathway leading to FCD

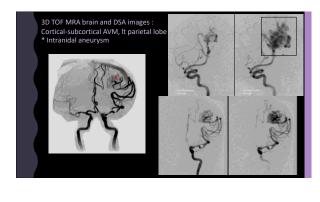


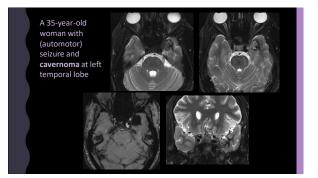

NEOPLASMS

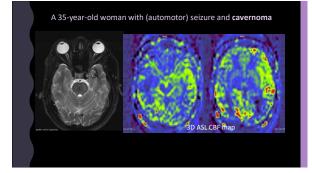

- Involved region: usually temporal lobe (70%), in or adjacent to the cerebral cortex
- MRI 96-99% sensitivity
- Indolent tumors: Ganglioglioma, dysembryoplastic neuroepithelial tumor (DNET), and low-grade gliomas
- Metastasis (elderly, late-onset seizure)
- Chronic recurrent seizures: small, well localized, little or no perilesional edema, +/- mass effect and calvarial remodelling

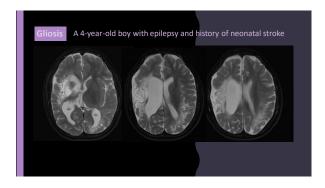


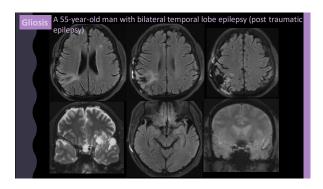


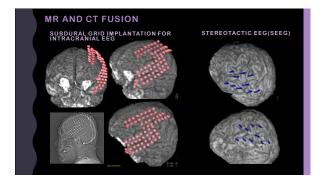

VASCULAR MALFORMATION


- Brain arteriovenous malformation (BAVM)
- Cavernous angioma or cavernoma: central hyperintensity due to haemoglobin products surrounded by a hypointense rim resulting from hemosiderin
- Most capillary telangiectasia and venous angiomas are clinically silent.


CORTICAL-SUBCORTICAL BRAIN AVM WITH SEIZURE


Seizure; a common clinical manifestation of intracranial AVMs (20-60%) Often associated with the AVMs in the temporal and frontal regions





ROLE OF NEUROIMAGING IN POSTOPERATIVE EVALUATION

- Determine the adequacy of resection, reasons for operative failure, complications
- Monitor tumor resections for recurrence, follow-up of other substrates
- Prognosticating the postoperative seizure control
- To identify any other previously unrecognized epileptogenic substrates at other location in the brain
- Intracranial EEG: verify the exact anatomic distribution of contacts.

