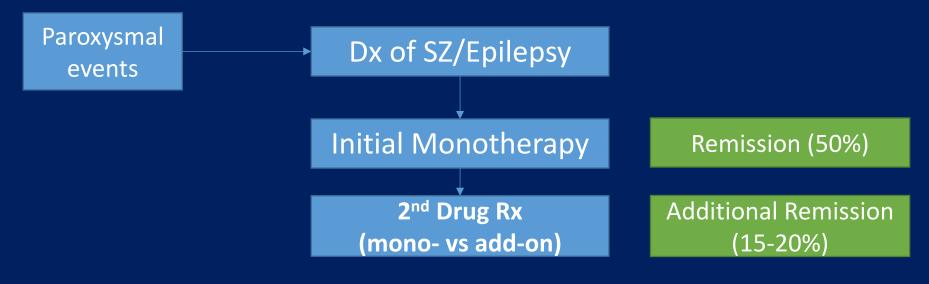
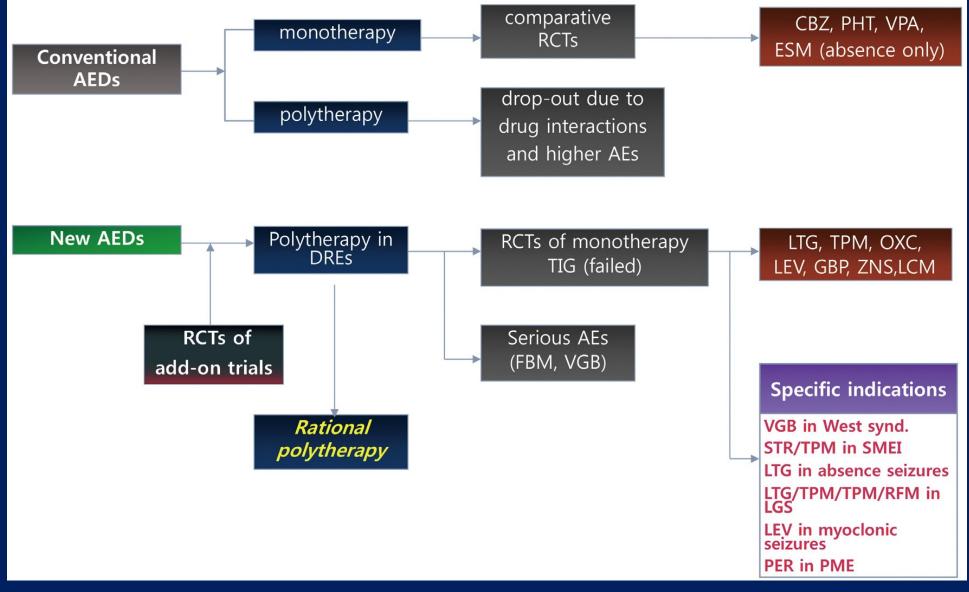
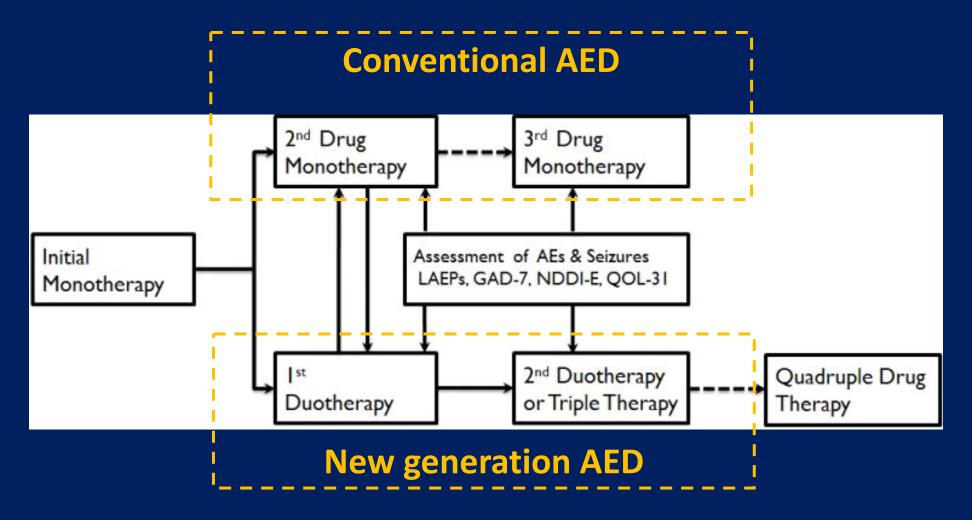
Management of Drug-resistant epilepsy (DRE)


Sattawut Wongwiangjunt, M.D.


Division of Neurology, Department of Medicine Siriraj Hospital, Mahidol University

Epilepsy Care

Seizure **Epilepsy diagnosis** Medication trials Imaging for pathology Medical intractability **Surgical Consideration** Surgical workup **Not surgery Surgery**


Pathway of epilepsy management

Lee BI, et al. Epilepsy Research 2019; 106-5

Sequential AED trials epilepsy

Park KM, et al. J of Epilepsy Research 2019;9:14-26

3rd gen AEDs

Old	Newer (2 nd gen)	Newest (3 rd gen)
Phenobarbital 1919	Felbamate 1993	Pregabalin 2005
Phenytoin 1938	Gabapentin 1993	Rufinamide 2009
Primidone 1954	Lamotrigine 1994	Lacosamide 2009
Ethosuximide 1960	Topiramate 1996	Vigabatrin 2009
Carbamazepine 1974	Tiagabine 1997	Clobazam 2011
Valproic acid 1978	Levetiracetam 1999	Ezogabine 2011
	Oxcarbazepine 2000	Perampanel 2012
	Zonisamide 2000	Eslicarbazepine 2014

Pattern of treatment response

Table 1	Seizure-free rates with successive antiepileptic drug regimens								
Drug regimens	No. of patients	Seizure-free on monotherapy	% Seizure-free on regimen						
First	1,098	543	0	543	49.5	49.5			
Second	398	101	45	146	13.3	36.7			
Third	168	26	15	41	3.7	24.4			
Fourth	68	6	5	11	1.0	16.2			
Fifth	32	1	3	4	0.4	12.5			
Sixth	16	1	1	2	0.2	12.5			
Seventh	9	1	1	2	0.2	22.2			
Eighth	3	0	0	0	0.0	0.0			
Ninth	2	0	0	0	0.0	0.0			

SZ freedom does not differ substantially whether an established or a new-generation AED is used.

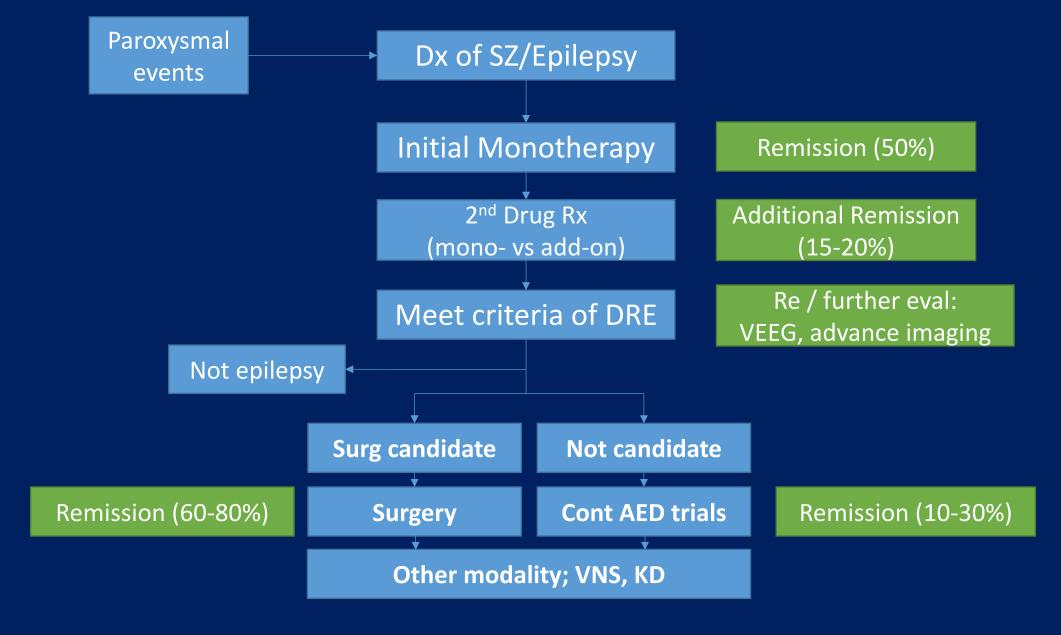
Epilepsia, 51(6):1069–1077, 2010 doi: 10.1111/j.1528-1167.2009.02397.x

SPECIAL REPORT

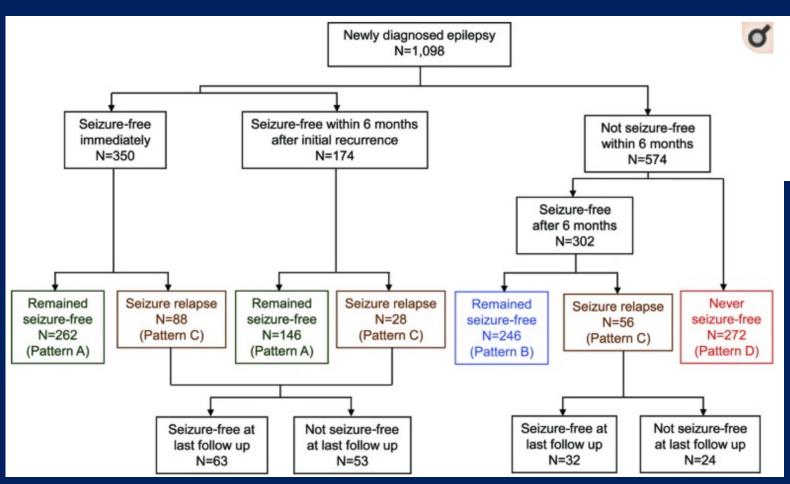
Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies

*IPatrick Kwan, †Alexis Arzimanoglou, ‡Anne T. Berg, §Martin J. Brodie, ¶W. Allen Hauser, #2Gary Mathern, **Solomon L. Moshé, ††Emilio Perucca, ‡‡Samuel Wiebe, and §§2Jacqueline French

"Drug-resistant or Medically intractable epilepsy"


 "a failure of adequate trials of 2 tolerated, appropriately chosen and used anticonvulsant drug schedules (whether as monotherapy or in combination) to achieve sustained seizure freedom."

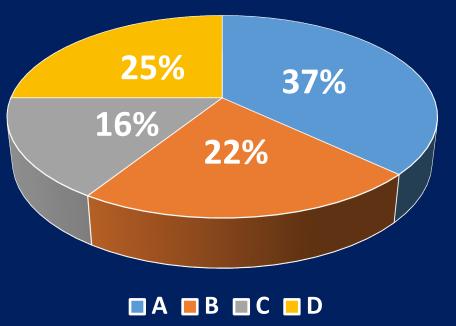
Exclude pseudoresistance


Table 1. Some Reasons for Pseudoresistance to Antiepileptic Drug Therapy.

Reason	Examples
Wrong diagnosis	Syncope, cardiac arrhythmia, or other conditions; psychogenic nonepileptic seizures
Wrong drug (or drugs)	Inappropriate for seizure type; pharmaco- kinetic or pharmacodynamic interactions
Wrong dose	Too low (overreliance on "therapeutic" blood levels); side effects preventing drug increase
Lifestyle issues	Poor compliance with medication; alcohol or drug abuse

Pathway of epilepsy management

Pattern of treatment response



Pattern A: Early and sustained

Pattern B: Delayed and sustained

Pattern C: Fluctuating course

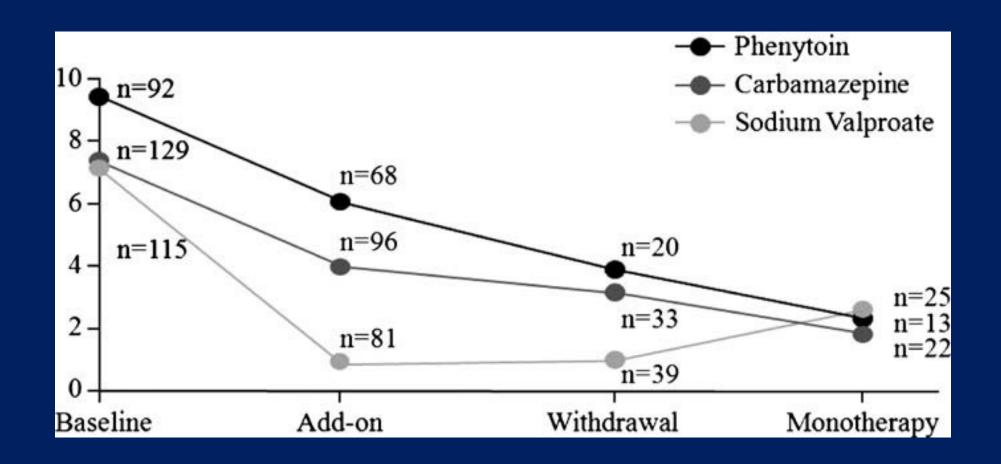
Pattern D: Never SZ-free

Rational polytherapy

- •1st AED fails due to lack of tolerability \rightarrow 2nd mono
- •1st AED fails due to inefficiency
 - →Add-on (partially effective from 1st AED)
 - \rightarrow 2nd mono (totally ineffective from 1st AED)
- 2nd mono should be considered in
 - OElder, women w/ child bearing age
 - Compliance challenging
 - OCost

Add-on: consider different MOA and co-morbidity

Rational Combination of AEDs


Recommend

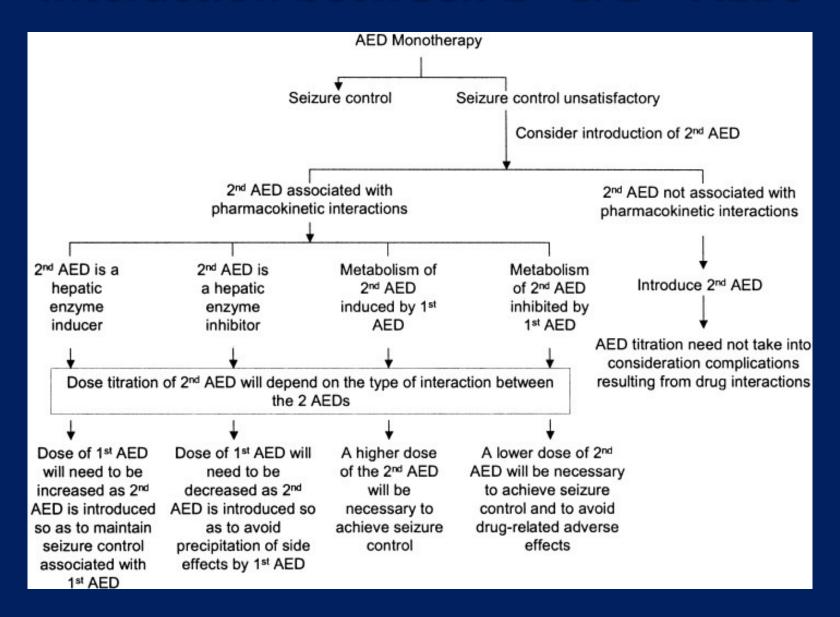
- : Na-Channel blocker + GABAergic
- : Na-Channel blocker + multiple mechanism AED
- : Valproate + Lamotrigine

Not recommend

- : Na-Channel blocker + Na-Channel blocker
- more neurotoxic side-effects; dizziness, diplopia and ataxia

Synergistic effect of VPA + LTG

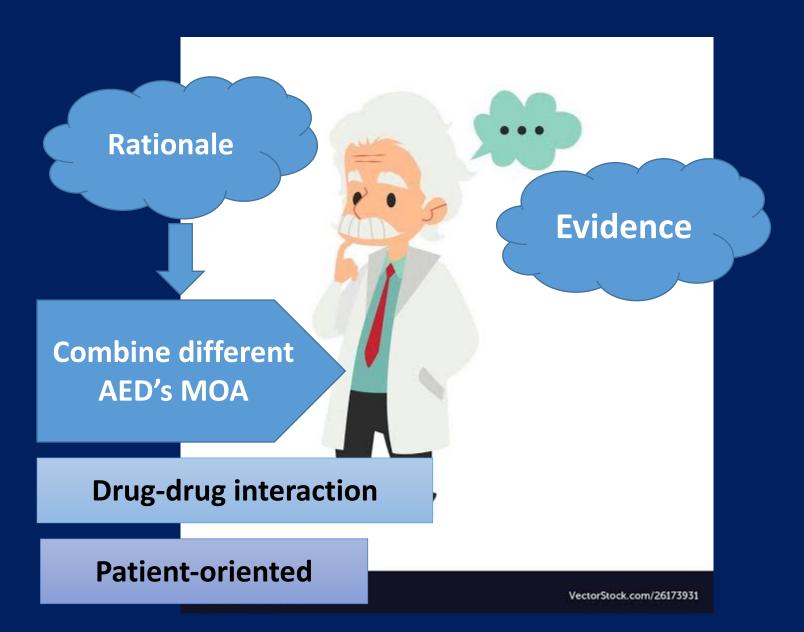
Synergistic combination regimen


Combination regimen	LOE	Remarks
VPA + LTG	+++	
VPA + ETX	++	In absence
LTG + TPM	+	
LCS + LEV	++	
LTG + LEV	++	
VPA + LEV	+	
VPA + clobazam + stiripentol	+++	In Dravet syndrome
VPA + LTG + BZP	++	In epileptic encephalopathy

```
+++ controlled trials
++ case series or observational studies
+ case reports
```

Guidance for combining AEDs

- 1. Establish optimal dose of baseline agent
- 2. Add drug with multiple mechanisms
- 3. Avoid combining similar MOA
- 4. Titrate new agent slowly and carefully
- 5. Be prepared to reduce dose of original drug
- 6. Replace less effective drug if response still poor
- 7. Try range of different duo therapies
- 8. Add 3rd drug if still suboptimum


Interaction between 1st & 2nd AEDs

Expected changes in plasma concentration when new AED

Effe	ct of					ducer hibitor												
On		PB♦	PHT [♦]	PRM♦	ESM	CBZ♦	VPA^\square	FBM^\square	VGB	GBP	LTG	TPM♦	TGB	OXC♦	LEV	PGB	ZNS	LCS
	PB	-	↑	-	-	-	\uparrow	\uparrow	\downarrow	-	-	-	-	1	-	-	-	-
	PHT	$\uparrow\downarrow$	-	$\uparrow\downarrow$	-	$\uparrow\downarrow$	-	\uparrow	\downarrow	-	-	1	-	1	-	-	-	-
	PRM	\downarrow	\downarrow	-	-	\downarrow	1	-	\downarrow	-	-	-	-	-	-	-	-	-
	ESM	\downarrow	\downarrow	\downarrow	-	\downarrow	1	-	-	-	-	-	-	-	-	-	-	-
	CBZ	\downarrow	\downarrow	\downarrow	-	-	1	\downarrow	↑	-	-	-	-	\downarrow	-	-	1	-
	VPA	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	-	\uparrow	-	-	-	\downarrow	-	-	-	-	-	-
	FBM	\downarrow	\downarrow	\downarrow	-	\downarrow	1	-	-	-	-	-	-	-	-	-	-	-
	VGB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	GBP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	LTG	\downarrow	\downarrow	\downarrow	-	\downarrow	\uparrow	-	-	-	-	-	-	\downarrow	-	-	-	-
	TPM	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow	-	-	-	-	-	-	-	-	-	-	-
	TGB	\downarrow	\downarrow	\downarrow	-	\downarrow	-	-	-	-	-	-	-	-	-	-	-	-
	OXC	\downarrow	\downarrow	\downarrow	-	\downarrow	-	-	-	-	-	-	-	-	-	-	-	-
	LEV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PGB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ZNS	\downarrow	\downarrow	\downarrow	-	\downarrow	-	-	-	-	-	-	-	-	-	-	-	-
	LCS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	OC	<u> </u>	<u> </u>	<u> </u>	-	<u></u>	-	<u></u>	-	-	-	<u></u>	-	<u></u>	-	-	↓	-

Rationale polytherapy

Patient-oriented: To choose, To avoid

Co-morbidity	Choose	Avoid
Obesity	TPM, ZNS	VPA, PGB, GBP, PER
Migraine	TPM, VPA, ZNS, PGB, GBP	
Skin rash	LEV, GBP, PGB, TPM, VPA, PER, LCM	LTG, OXC, CBZ, PHT, PB
Neuropathic pain	PGB, GBP, CBZ, OXC, PHT	
Depression +/- Behav/Psych	LTG, CBZ, OXC, VPA, PGB	LEV, PV, PRM, TPM, ZNS, PER
Cognitive dysfn	LTG, LEV, OXC	PB, TPM, ZNS
Concomitant drugs	GBP, LEV, PGB, VPA	El-drugs
Osteoporosis	LTG, LEV	El-drugs, TPM, VPA, ZNS
Tremor	TPM, PER	VPA

Patient-oriented: To choose, To avoid

Co-morbidity	Choose	Avoid
Restless legs syndrome	GBP, PGB, CZP	
Renal stone		TPM, ZNS
Glaucoma		TPM
Hematological disorder		CBZ, VPA
Hyponatremia		OXC, ESL, CBZ
Hepatic disease	New AEDs	VPA
Renal disease	Old AEDs	
Cardiac arrhythmia		CBZ, LTG, LCM, PHT
Cancer	VPA, LEV, PER	El-drugs
Heat stroke		TPM, ZNS

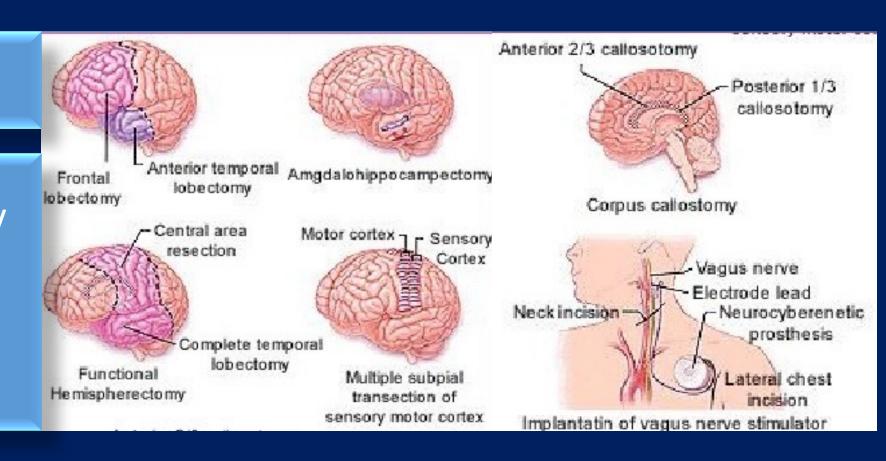
Epilepsy Care

Seizure **Epilepsy diagnosis** Medication trials Imaging for pathology Medical intractability **Surgical Consideration** Surgical workup **Not surgery Surgery**

Treatment Alternatives for DRE:

Surgery

- Resective surgery
- Palliative surgery
- Non-resective technique


Non-Surgery

Diet
- Ketogenic diet

Type of surgical procedure

Surgery

- Resective surgery
- Palliative surgery
- Non-resective technique

Resective surgery

Resect epileptogenic zone to eliminate or reduce SZ

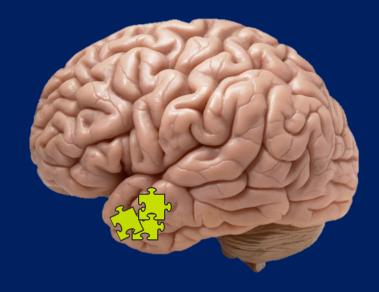
Without causing deficits

Indication

DRE with SZs that interfere daily living

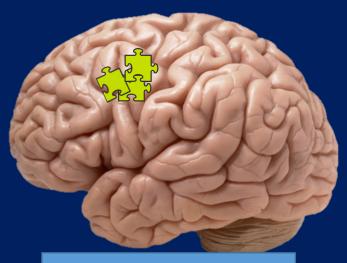
The progression timeline should reach > 2 years, except in patients with life-threatening SZs or in children

Epilepsies that can be treated with surgery

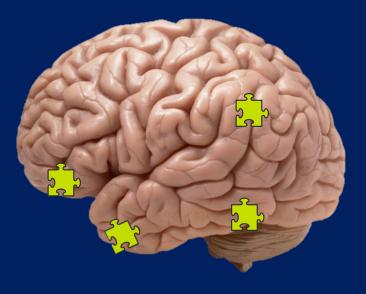

Contraindication

No absolute C/I

- 1. Age; in elderly should be carefully assessed
- 2. Etiology; progressive neurological disease, except Rasmussen encep
- 3. Concerning comorbidity that high risk for surgery
- 4. Concomitant psychiatric disorder: if it may compromise the result
- 5. IQ < 70 shows poorer prognosis; but not absolute C/I


Presurgical evaluation: Goal

- To localize the cortical area that generates seizures.
- "epileptogenic zone" (EZ)
- > zone whose resection is necessary and sufficient to eliminate seizures
- •So "epileptogenic zone" cannot be certainly determined until the patient seizure free after resective surgery.


Concordant

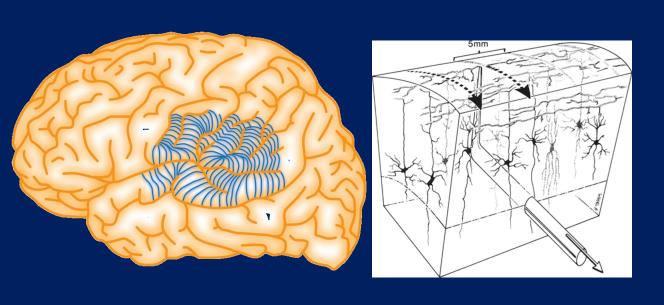
Resection

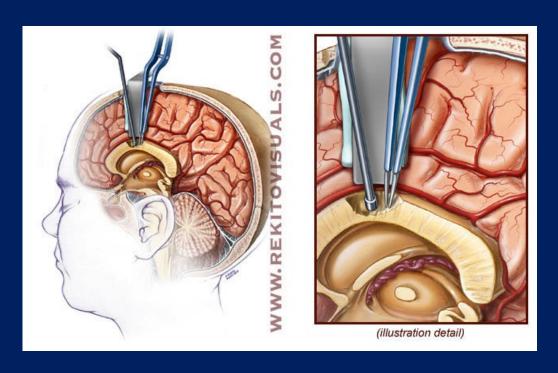
Concordant but Close to eloquent cortex

No Resection

Discordant

Invasive monitoring


Results of epilepsy surgery


Procedure	SZ free%	
Surgically treatable syndromes		
Mesial TLE -> amygdalohippocampectomy w/ or w/o ATL	70-80%	
Neocortical epilepsy with single circumscribed lesion -> lesionectomy - Temporal - Extratemporal	70-80% 60-70%	
Poorer outcomes		
Neocortical epilepsy with single poorly-circumscribed lesion: - Temporal - Frontal - Parietal - Occipital	66% 27-34% 46% 46%	
Non-lesional epilepsy - Temporal - Extratemporal	60% 35%	

Palliative surgery

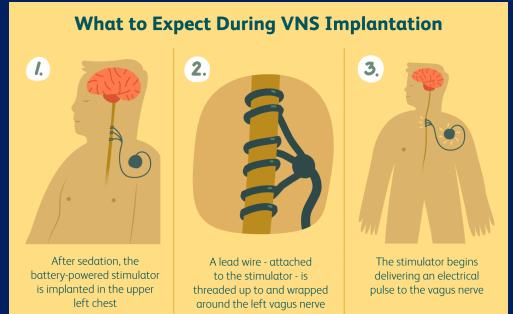
- Multiple subpial transection
 - Exclusively in eloquent area;Landua-Kleffner syndrome
 - ■55% SZ free, 4% with deficit

- Corpus callosotomy
 - Partial or total
 - For atonic SZ
 - ■70% shows SZ reduction

Non resection techniques

Vagus nerve stimulation

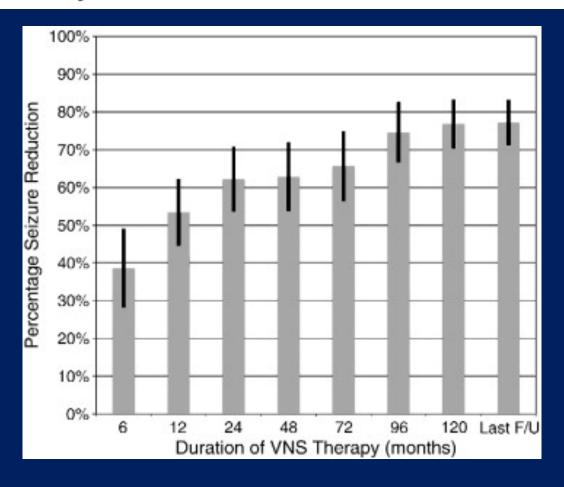
Deep brain stimulation


Non-surgical candidate

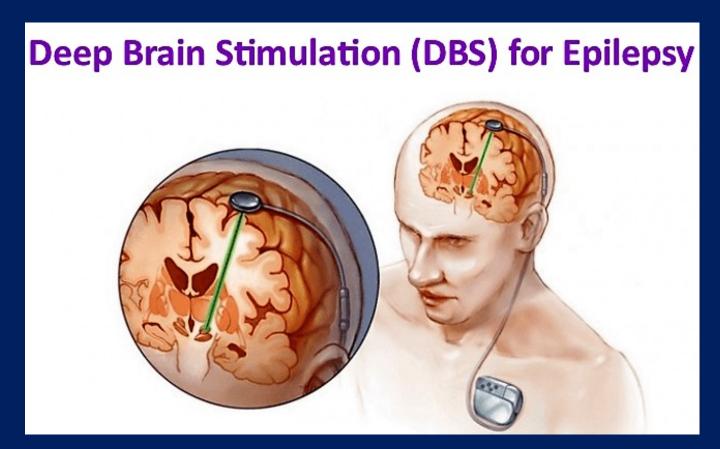
Trigeminal nerve stimulation

Gamma knife radiosurgery

Vagus nerve stimulation

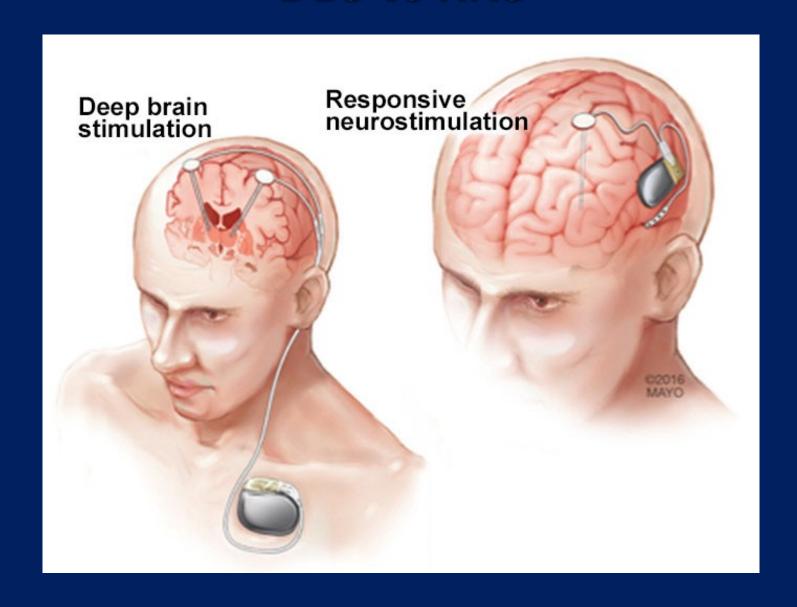

- Not surgical candidate
 Both focal and generalized epilepsy
- Median SZ reduction 44.6%
- 50.6% of patients SZ reduction > 50%
- 4.6% SZ free
- SZ reduction 60% in pt < 6 years old

Efficacy of vagus nerve stimulation over time: Review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS > 10 years


Robert E. Elliott ^{a,*}, Amr Morsi ^a, Omar Tanweer ^a, Bartosz Grobelny ^a, Eric Geller ^b, Chad Carlson ^c, Orrin Devinsky ^{b,c,d}, Werner K. Doyle ^{a,b}

Epilepsy & Behavior 20 (2011) 478–483

Deep brain stimulation


- Potentially regulate cortical/subcortical circuit
- Targeted at
 - anterior nuclei of thalamus
 - Caudate nucleus
 - Hypothalamus
 - Cerebellum
- In ATN;
 - ○56% SZ reduction
 - ○54% of pt >50% SZ reduction

Responsive neurostimulation

DBS vs RNS

Treatment Alternatives for DRE: Outline

Surgery

- Resective surgery
- Palliative surgery
- Non-resective technique

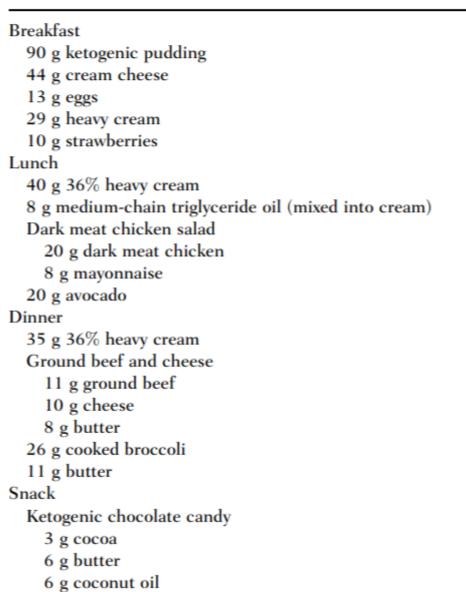
Non-Surgery

Diet
- Ketogenic diet

Ketogenic diet

Ketogenic diet

- High fat -- Adequate protein -- Low carb
- Commonly used in epileptic children
- Force the brain to use "ketone" instead of glucose as a fuel.
- KD promotes synthesis of glutamine (precursor of GABA)



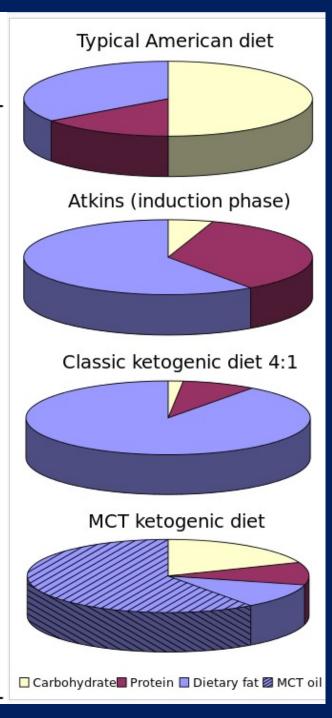


Table 1. Example of Typical Ketogenic Diet Meals Using a 1100 kcal, 4:1 Ketogenic Diet (for a Typical 4-Year-Old Child)

Efficacy

- 50% SZ reduction;>50% of pts
- 90% SZ reduction; 1/3 of pts
- Respond in 2 wks
- Recommendation to try 3 mo

J Child Neurol. 2009;24:979-988

Table 4. Potential Beneficial Indications for Dietary Therapy (Adapted From Ref 5)

Probable Benefit (at Least 2 Publications)

Glucose transporter protein 1 (GLUT-1) deficiency

Pyruvate dehydrogenase deficiency (PDHD)

Myoclonic-astatic epilepsy (Doose syndrome)

Tuberous sclerosis complex

Rett syndrome

Severe myoclonic epilepsy of infancy (Dravet syndrome)

Infantile spasms

Selected mitochondrial disorders

Children receiving only formula (infants or enterally fed patients)

Suggestion of benefit (one case report or series)

Landau-Kleffner syndrome

Lafora body disease

Combined use with vagus nerve stimulation

Combined use with zonisamide

Treatment Alternatives for DRE: Take home messages

Rational polyRx

Surgery

Non-Surgery

- Resective surgery
- Palliative surgery
- Non-resective technique

Diet

- Ketogenic diet