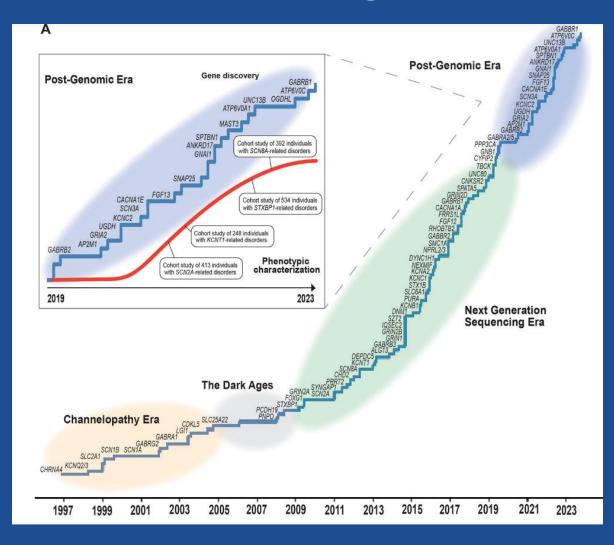


Mahidol University مکنهامه کومس Genetic testing in epilepsy

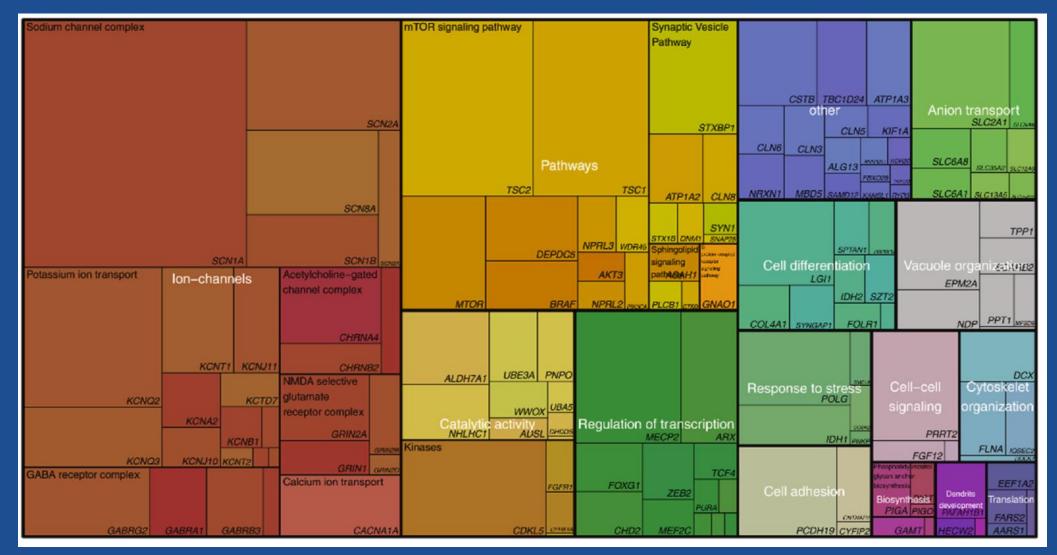
7 November 2024

Asst. Prof. Mongkol Chanvanichtrakool Division of Neurology, Department of Pediatrics Faculty of Medicine Siriraj Hospital

Outline


- Introduction to genomic era
- Type of genetic testing
- Pre-genetic testing counseling
- Case-based discussion
- How to handle the genetic result

Innovations in Genetic testing



Next-Generation Sequencing (NGS)

Treemap of Tier 1 epilepsy genes characterized in Gene Ontology term (GO) groups

Why is genetic testing important?

End of Diagnostic odyssey

Reduce unnecessary investigation

Personalized treatment

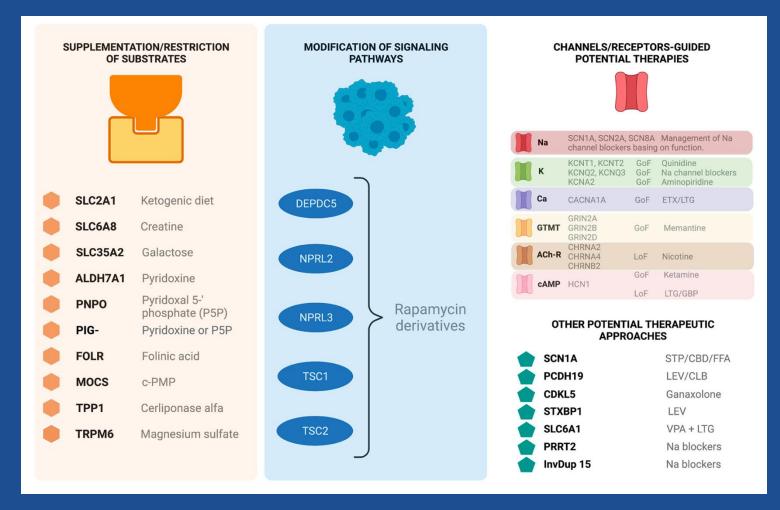
Screening for comorbidities

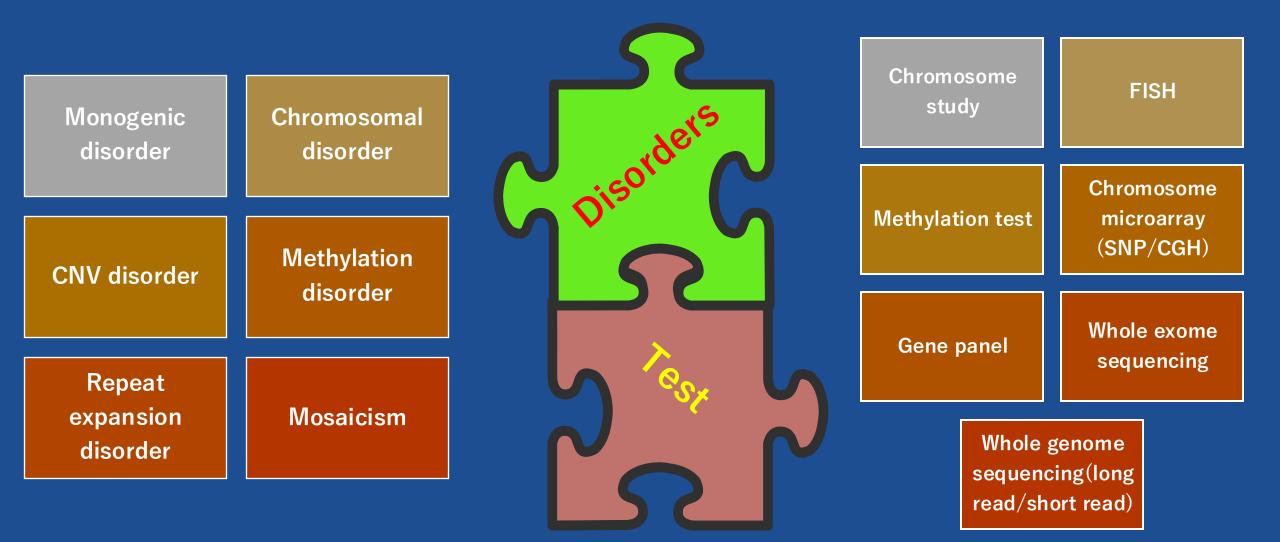
Opportunity for future research

Connecting with with a support group

Connecting families with a support group

RESEARCH EDUCATION

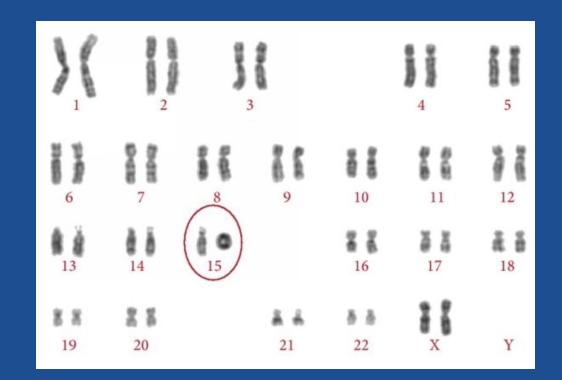




Epilepsy-related genetic conditions displaying potential specific therapeutic approaches

Matching Genetic Disorder with Appropriate Testing

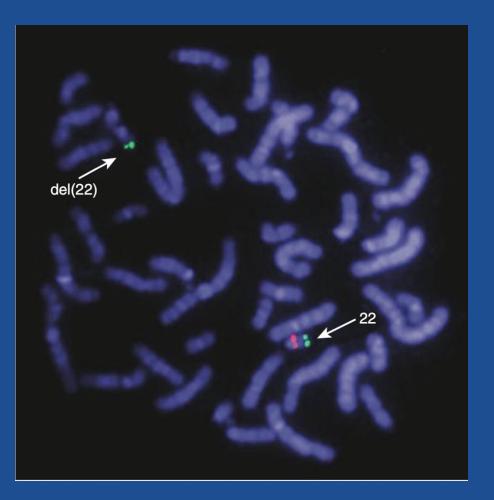
Type of Genetic Testing


Cytogenetic	Biochemical	Molecular
KaryotypeFISHCMA	 Plasma amino acids Urine organic acids Comprehensive metabolic test Enzyme assays 	 Sanger sequencing MLPA NGS Gene panel ES GS

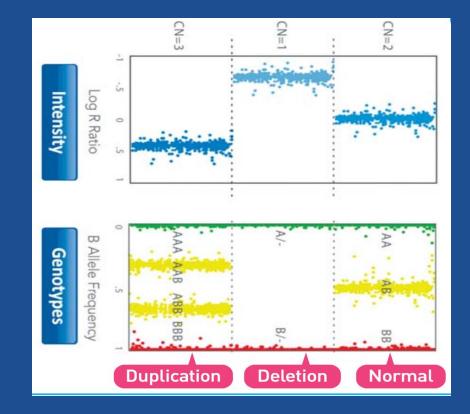
CMA: Chromosome microarray ES: Exome sequencing GS: Genome sequencing MLPA: Multiplex Ligation-Dependent Probe Amplification NGS: Next generation sequencing

Conventional karyotyping

• Detect

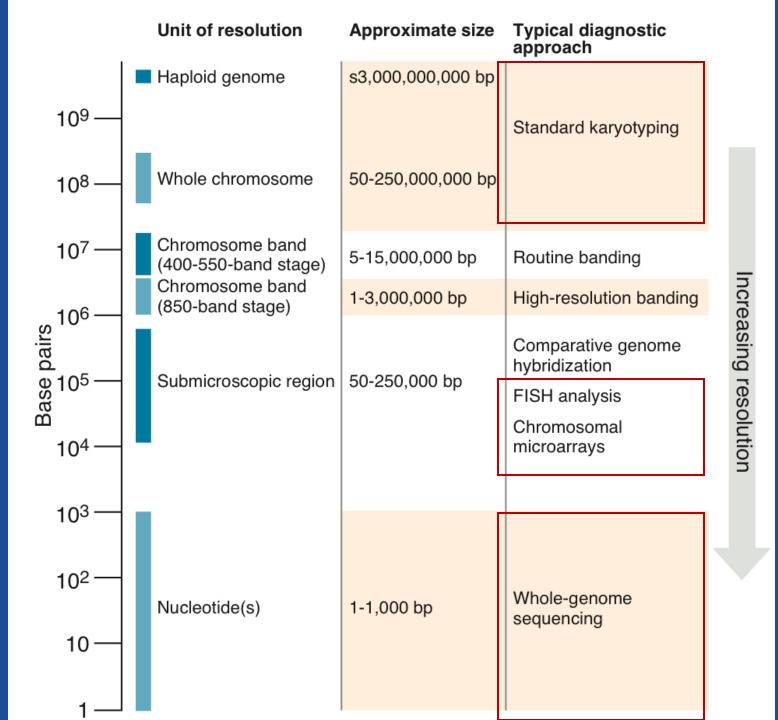

- Chromosomal abnormalities of 5 Mb and larger
- 2–3 Mb (high-resolution banding)
- Analyze chromosomes for chromosomal rearrangements
 - Balanced or unbalanced translocations
 - Inversions
 - Ring chromosome

Ring chromosome 15


FISH

- Specific probe
- Resolution: 150-200 kb
- Can not detect uniparental disomy

Chromosome microarray (CGH/SNP)



- Resolution: Few kb or longer
- limitation in balanced chromosome rearrangements, such as translocations or inversions

Type of Genetic Testing

Cytogenetic	Biochemical	Molecular
KaryotypeFISHCMA	 Plasma amino acids Urine organic acids Comprehensive metabolic test Enzyme assays 	 Sanger sequencing MLPA NGS Gene panel ES GS

CMA: Chromosome microarray ES: Exome sequencing GS: Genome sequencing MLPA: Multiplex Ligation-Dependent Probe Amplification NGS: Next generation sequencing

Resolution

Thompson & Thompson genetics in medicine, 8th Ed.

	Resolution	Applications	Limitations
Karyotyping	2-3 Mb / 5 Mb	Scanning for aneuploidy, large deletion or duplication and structural variants	Cannot identify microdeletion/duplication
CMA: SNP array	Few kb or longer	Scanning the entire genome for any CNV, Can identify ROH	Cannot identify balanced translocation and inversion
CMA: Array-CGH	Few kb or longer	Scanning the entire genome for any CNV	Same as SNP-array. Cannot identify ROH
Gene panel	One to several bp	Scanning for genes of interest. Can be supplemented with other technologies to solve low-coverage regions and detect small CNV. "True" panel testing with deep coverage can detect low-level mosaicism.	Cannot detect deep-intronic changes. Different labs have different set of genes for targeted phenotype.
ES	One to several bp	Scanning for all genes of interest excluding non-coding and deep intronic regions.	Might miss variants in low- coverage regions and deep intronic changes, low-level mosaicism. Less reliable for copy number calling.
GS	One to several bp	Scanning for entire genome including non- coding and deep intronic regions.	Costly and mostly research- driven. Most variants in non- coding regions are uninterpretable

Technologies used in genetic analysis

Study	Proportion 95% Cl		
CMA Ref #13 Ref #14 Ref #4 Ref #16 Ref #9 Ref #18 Ref #11 Ref #5 Random effects model Heterogeneity: I ² = 82% (65%, 9	0.09 (0.07, 0.12) 0.04 (0.02, 0.07) 0.10 (0.05, 0.17) 0.14 (0.05, 0.27) 0.07 (0.04, 0.11) 0.05 (0.04, 0.07) 0.07 (0.04, 0.13) 0.17 (0.12, 0.23) 0.08 (0.06, 0.12) 1%)		
EP Ref #12 Ref #23 Ref #7 Ref #15 Ref #21 Ref #20 Ref #17 Ref #5 Ref #6 Random effects model Heterogeneity: 1 ² = 74% (49%, 8	0.48 (0.31, 0.66) 0.21 (0.08, 0.41) 0.47 (0.24, 0.71) 0.13 (0.07, 0.21) 0.19 (0.14, 0.23) 0.14 (0.06, 0.27) 0.23 (0.17, 0.29) 0.27 (0.19, 0.36) 0.18 (0.14, 0.23) 0.23 (0.18, 0.29) 7%)		
WES Ref #22 Ref #16 Ref #8 Ref #19 Ref #10 Ref #5 Random effects model Heterogeneity: I ² = 85% (70%, 9		0.0 0.2 0.4 0.6 0.8 1.0 Odds ratio	CI = confidence interval; CM/ EP = epilepsy panel; WES = wi

= confidence interval; CMA = chromosomal microarray; = epilepsy panel; WES = whole-exome sequencing.

Genetic Counseling

- Types of Genetic Testing Performed on Patients
- Sample Collection
- Advantages of Genetic Testing
 - Personalized treatment
 - Prognostic information and guidance
 - Recurrence risk assessment
- Possible Results
 - Positive findings
 - Negative findings
 - Variants of uncertain significance (VUS)
 - Secondary findings (ES/GS)

Approach

History taking & Physical examination

Initial investigation (eg. EEG, MRI brain)

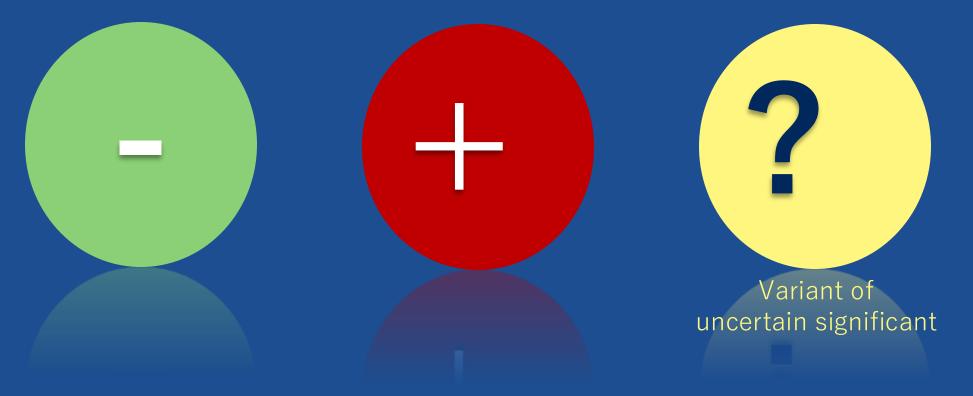
Identify Diseases/Syndromes Based on Clinical Clues

Tailored Genetic testing Depend on Genetic disorders

Who should get genetic testing?

- Unexplained refractory epilepsies
- Neonatal with epileptic encephalopathies (up to 83%)
- Children with onset < 3 years (37%)
- Epilepsy with developmental delay or regression
- Suspicious genetic epileptic syndrome
 - EIEE, Dravet syndrome, familial self-limited epileptic syndrome, DEE
- Features suggest a genetic syndrome eg. dysmorphic facies

Epilepsia. 2021 Jan;62(1):143-151 Epilepsia. 2022 Feb;63(2):375-387 JAMA Netw Open. 2023;6(7)

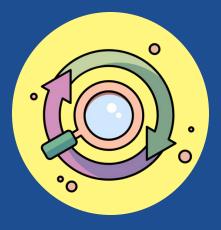

Outline

- Introduction to genomic era
- Type of genetic testing
- Pre-genetic testing counseling
- Case-based discussion
- How to handle the genetic result

Managing Genetic Test Results

How to Handle a Positive Result

No need to memorize diseases; just know how to find the information



How to Handle a Positive Result

Personalized medicine

- Dravet syndrome:
 - avoid Na channel blocker
 - Antisense oligonucleotide
- SCN8A or SCN2A related DEE (GOF):
 - Sodium channel blocker, Relutrigine (PRAX-562)

Surveillance

- Rett syndrome
 - QT prolong (18-55%)

Genetic counseling and family planning

- Prenatal diagnosis
- Preimplantation diagnosis
- Carrier testing
- Advice prognosis

How to Handle a Negative Result

- Review test limitations
- Consider alternative diagnoses
- Reevaluate the patient's condition
 - Some phenotypes may emerge with age
 - Ongoing discovery of new genes and conditions
 - Updates in genetic variant data

Acknowledgement

Division of Neurology, Department of Pediatrics