

Evaluating Drug Resistance, Surgical Timing, and Post-operative Medications

Sattawut Wongwiangjunt, M.D.

Division of Neurology, Siriraj Hospital, Mahidol University

Pretest 1.

Which of the following resective epilepsy surgery gives the best seizure-free outcome?

- A. Vagus nerve stimulation
- B. Anterior temporal lobectomy
- C. Lesionectomy for focal cortical dysplasia
- D. Corpus callosotomy
- E. Multiple subpial resection

Pretest 2.

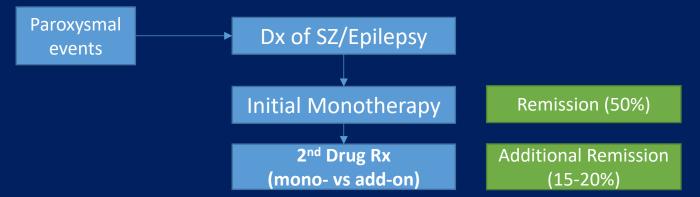
How many drugs should be tried before epilepsy surgery?

A. 2

B. 3

C. 4

D. 5


E. 6

Seizure Epilepsy diagnosis Medication trials Imaging for pathology Medical intractability **Surgical Consideration** \bullet Surgical workup 000000 Surgery **Not surgery**

Pathway of epilepsy management

มหาวทยาลยม) ดณะแพทยศาสตร์ ศิริราชพยาบาล

ลัยมหิดล Treatment Response with AEDs

Drug #	% Seizure free	
1 st mono	47.2	+13%
2 nd mono	60.2	. 10/0
3 rd mono or combination	64 5	+4%

36% (~1/3) of patients have resistant to medication

Kwan & Brodie. NEJM 2000;342:314-9

Old	Newer (2 nd gen)	Newest (3 rd gen)
Phenobarbital 1919	Felbamate 1993	Pregabalin 2005
Phenytoin 1938	Gabapentin 1993	Rufinamide 2009
Primidone 1954	Lamotrigine 1994	Lacosamide 2009
Ethosuximide 1960	Topiramate 1996	Vigabatrin 2009
Carbamazepine 1974	Tiagabine 1997	Clobazam 2011
Valproic acid 1978	Levetiracetam 1999	Ezogabine 2011
	Oxcarbazepine 2000	Perampanel 2012
	Zonisamide 2000	Eslicarbazepine 2014

มหาวิทยาลัยมห ดณะแพทยศาสดร์ ศิริราชพยาบาล

Pattern of treatment response

Table 1	Seizure-fre	Seizure-free rates with successive antiepileptic drug regimens				
Drug regimens	No. of patients	Seizure-free on monotherapy	Seizure-free on combination	Total no. seizure-free	% of cohort seizure-free	% Seizure-free on regimen
First	1,098	543	0	543	49.5	49.5
Second	398	101	45	146	13.3	36.7
Third	168	26	15	41	3.7	24.4
Fourth	68	6	5	11	1.0	16.2
Fifth	32	1	3	4	0.4	12.5
Sixth	16	1	1	2	0.2	12.5
Seventh	9	1	1	2	0.2	22.2
Eighth	3	0	0	0	0.0	0.0
Ninth	2	0	0	0	0.0	0.0

SZ freedom does not differ substantially whether an established or a new-generation AED is used.

Epilepsia, 51(6):1069–1077, 2010 doi: 10.1111/j.1528-1167.2009.02397.x

SPECIAL REPORT

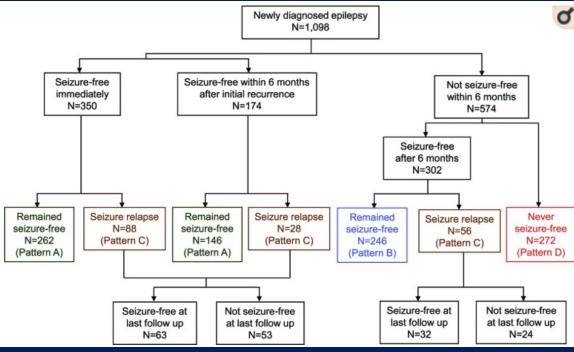
Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies

 *¹Patrick Kwan, †Alexis Arzimanoglou, ‡Anne T. Berg, §Martin J. Brodie,
 ¶W. Allen Hauser, #²Gary Mathern, **Solomon L. Moshé, ††Emilio Perucca, ‡‡Samuel Wiebe, and §§²Jacqueline French

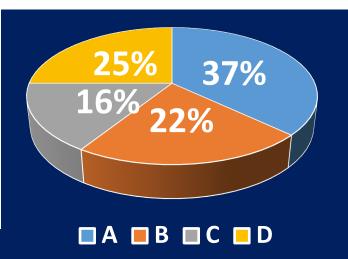
"Drug-resistant or Medically intractable epilepsy"

 "a failure of adequate trials of 2 tolerated, appropriately chosen and used anticonvulsant drug schedules (whether as monotherapy or in combination) to achieve sustained seizure freedom."

Kwan P, et al. Epilepsia 2010



Exclude pseudoresistance

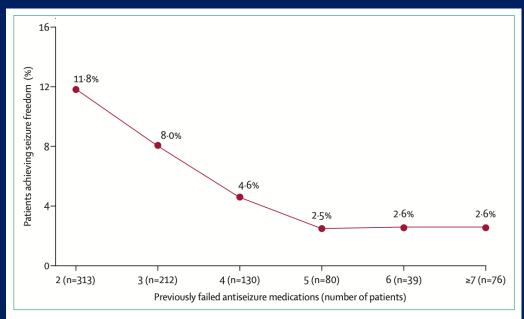

Table 1. Some Reasons for Pseudoresistance to Antiepileptic Drug Therapy.		
Reason	Examples	
Wrong diagnosis	Syncope, cardiac arrhythmia, or other condi- tions; psychogenic nonepileptic seizures	
Wrong drug (or drugs)	Inappropriate for seizure type; pharmaco- kinetic or pharmacodynamic interactions	
Wrong dose	Too low (overreliance on "therapeutic" blood levels); side effects preventing drug increase	
Lifestyle issues	Poor compliance with medication; alcohol or drug abuse	

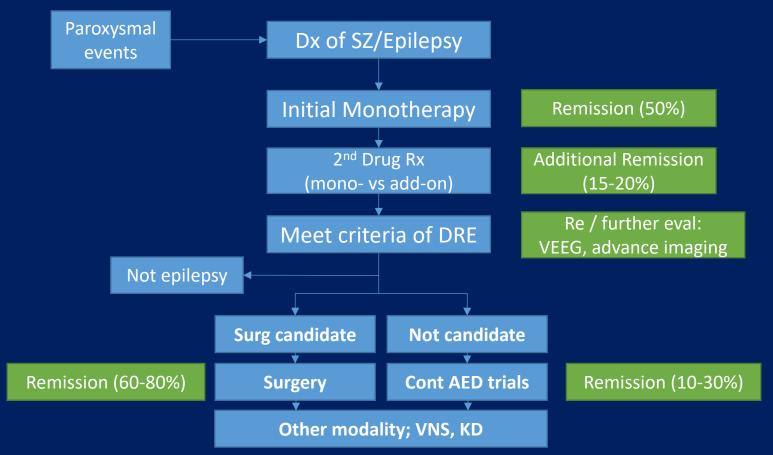
Kwan P, et al. N Engl J Med 2011;365:919-26.

Pattern A: Early and sustained Pattern B: Delayed and sustained Pattern C: Fluctuating course Pattern D: Never SZ-free

Neurology. 2012 May 15; 78(20): 1548–1554.

SZ freedom rate after newly added ASM



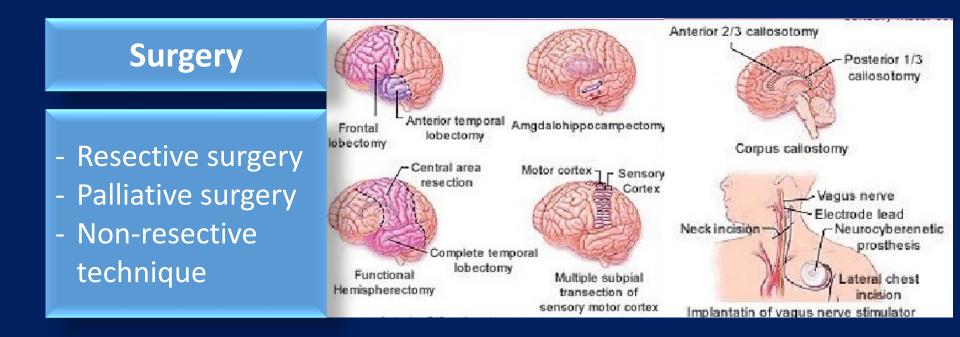

Figure 1: Seizure freedom rates after a newly added antiseizure medication, by number of previously tried antiseizure medications

• 850 DRE focal epilepsy

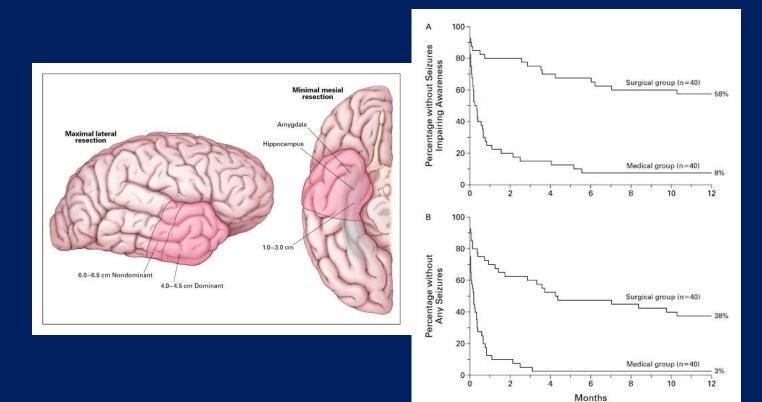
 Study participants were followed up prospectively over 18 months (max 34 months) after the introduction of another ASM into their regimen.

Perucca E, et al. Lancet Neurol 2023; 22: 723–34 Mula M, et al. Epilepsia 2019; 60: 1114–23

Pathway of epilepsy management



Seizure Epilepsy diagnosis Medication trials Imaging for pathology Medical intractability **Surgical Consideration** \bullet Surgical workup 000000 Surgery **Not surgery**



มหาวิทยาลัยมหิดส ดณะแพทยศาสดร์ ศิริราชพยาบาล

Type of surgical procedure

Anterior temporal lobectomy outcome

Wiebe S. N Engl J Med 2001; 345:311-318

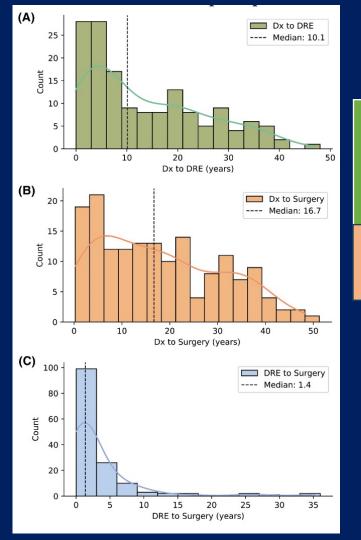
Results of epilepsy surgery

Procedure	SZ free%
Surgically treatable syndromes	
Mesial TLE -> amygdalohippocampectomy w/ or w/o ATL	70-80%
Neocortical epilepsy with single circumscribed lesion -> lesionectomy - Temporal - Extratemporal	70-80% 60-70%
Poorer outcomes	
 Neocortical epilepsy with single poorly-circumscribed lesion: Temporal Frontal Parietal Occipital 	66% 27-34% 46% 46%
Non-lesional epilepsy - Temporal - Extratemporal	60% 35%

Neurología. 2015;30 (7):439-446

Received: 12 December 2023

DOI: 10.1111/epi.17944



RESEARCH ARTICLE

Delays in the diagnosis and surgical treatment of drugresistant epilepsy: A cohort study

Justin M. Campbell^{1,2} I Samantha Yost² | Diwas Gautam² | Alysha Herich²,[†] | David Botros³ | Mason Slaughter³ | Michael Chodakiewitz^{4,5,6} | Amir Arain⁷ | Angela Peters⁷ | Sindhu Richards⁷ | Blake Newman⁷ | Brian Johnson⁷ | Shervin Rahimpour³ | Ben Shofty³

Campbell JM, et al. Epilepsia. 2024;65:1314–1321

Dx -> DRE DRE -> Sx 1.4y 10.1y Dx -> Sx 16.7y

Campbell JM, et al. Epilepsia. 2024;65:1314–1321

Received: 1 March 2022

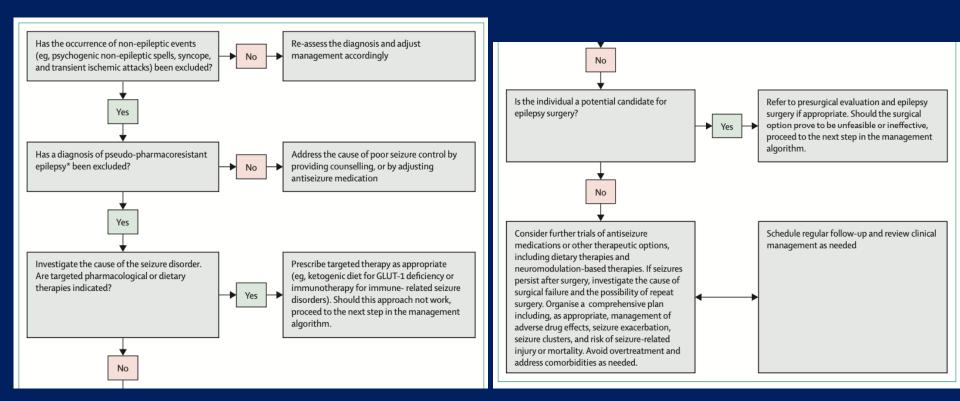
Revised: 25 June 2022 Accepted: 27 June 2022

DOI: 10.1111/epi.17350

SPECIAL REPORT

Epilepsia

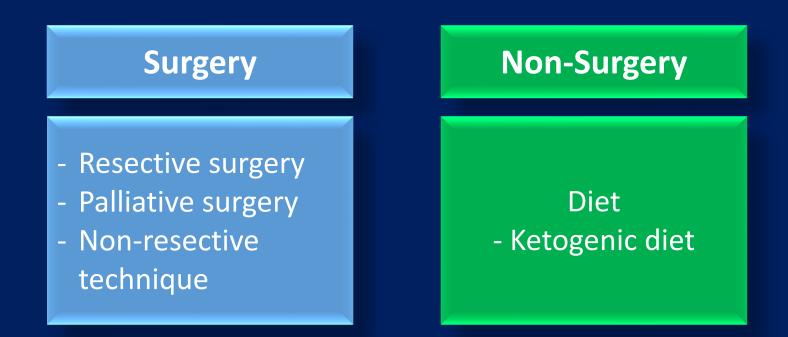
Timing of referral to evaluate for epilepsy surgery: Expert Consensus Recommendations from the Surgical Therapies Commission of the International League Against Epilepsy


Lara Jehi¹ Nathalie Jette² Churl-Su Kwon³ Colin B. Josephson⁴ | Jorge G. Burneo⁵ Fernando Cendes⁶ Michael R. Sperling⁷ | Sallie Baxendale⁸ Robyn M. Busch¹ Chahnez Charfi Triki⁹ | J. Helen Cross¹⁰ Dana Ekstein¹¹ Dario J. Englot¹² G Guoming Luan^{13,14,15} | Andre Palmini¹⁶ Loreto Rios¹⁷ Xiongfei Wang^{13,14,15} Karl Roessler¹⁸ | Bertil Rydenhag¹⁹ Georgia Ramantani²⁰ Karl Schuele²¹ | Jo M. Wilmshurst^{22,23} Sarah Wilson²⁴ Karl Wiebe⁴

Recommendation

- 1. Referral for a surgical evaluation **should** be offered to every patient with DRE (up to 70 years of age), as soon as DRE is ascertained,
- 2. A surgical referral should be considered for
 - older patients with DRE who have no surgical C/I
 - patients who are seizure-free on 1–2 ASMs but have a brain lesion in non-eloquent cortex
- 3. Referral for surgery **should not** be offered to patients with active substance abuse who are non-cooperative with management

Guideline for suspected or confirmed DRE


Perucca E, et al. Lancet Neurol 2023; 22: 723–34

Misconception re; epilepsy surgery

Misconception	Fact
Many drugs need to be tried.	After failing two AEDs, the chance of seizure remission is very low.
Multiple or diffuse lesions on MRI contraindicate surgery.	The epileptogenic zone may involve only one lesion, or part of a lesion.
Bilateral EEG spikes contraindicate surgery.	Bilateral interictal spikes are common in people with unilateral seizure onset.
Surgery is not possible if eloquent cortex is involved.	Risks and benefits can be evaluated on a case-by-case basis.
If there is an existing memory deficit, surgery will worsen it.	Poor memory usually will not get worse after surgery, and may improve.
Chronic psychosis contraindicates surgery.	These individuals may benefit from eliminating or reducing seizures.
IQ<70 contraindicates surgery.	These individuals may benefit from eliminating or reducing seizures.

(Adapted from Vakharia et al. Ann Neurol 2018;83:676-690.)

Treatment Alternatives for DRE:

Indication

Resective surgery

Resect epileptogenic zone to eliminate or reduce SZ

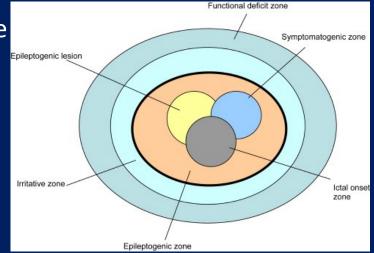
Without causing deficits

DRE with SZs that interfere daily living

The progression timeline should reach > 2 years, except in patients with life-threatening SZs or in children

Epilepsies that can be treated with surgery

Contraindication


No absolute C/I

- 1. Age; in elderly should be carefully assessed
- 2. Etiology; progressive neurological disease, except Rasmussen encep
- 3. Concerning comorbidity that high risk for surgery
- 4. Concomitant psychiatric disorder: if it may compromise the result
- 5. IQ < 70 shows poorer prognosis; but not absolute C/I

Epileptogenic zone (EZ)

• EZ cannot be directly defined by any test but can be estimated by a number of other zones.

- 1. Symptomatogenic zone
- 2. Irritative zone
- 3. Ictal onset zone
- 4. Epileptogenic lesion
- 5. Functional deficit zone

Symptomatogenic zone

• Cortex or regions produce the seizure manifestations.

- Tools: History taking and Video EEG monitoring
- Lateralization >> Localization
- Caveat

 $\odot \text{Not}$ focus only motor signs, but also focus on AURA

• Limitation

Not all the cortex leading to ictal semiology
 The earliest detected sign may consider as spreading

Irritative zone

- Zone that generates interictal epileptiform d/c.
- Tools: EEG, MEG
- Usually localized within the epileptogenic zone.

Limitation

 in some cases → multiple irritative zones, but might be only 1 of corresponding to the epileptogenic zone.

Ictal onset zone

• Area of cortex that is generating seizures.

- Tools: EEG; noninvasive, invasive
- This zone, if accurately defined, is contained within the epileptogenic zone.

Limitation

- The earliest detected ictal activity may have already undergone considerable spread.
- Even with Intracranial EEG recording, the ictal onset zone may be missed unless the electrodes placed directly over that zone.

Epileptogenic lesion

- Structural brain on CT or MRI \rightarrow (presumed) to be the cause of the epilepsy.
- Epileptogenic lesion vs EZ
- EZ within the lesion
 - ocortical dysplasia or hypothalamic hamartoma.
- EZ from brain surrounding ocavernous malformations and benign tumors.

Limitation

- Certain lesions may be accidental findings and not related to the epilepsy. eg. Arachnoid cysts and venous malformations.
- Multifocal lesions, Huge lesion
- Non-lesional MRI

Functional Deficit Zone

- Responsible for functional deficits.
- Tools:
- Neurological examination
 Neuropsychological testing
 Interictal EEG focal slow activity
 Local glucose uptake by PET
 Local cerebral blood flow by interictal SPECT.
 While the functional deficit zone may include the epileptogenic zone, it is often considerably larger.

Zones	Tools
Symptomatogenic zones	History taking Video EEG monitoring
Irritative zones	EEG MEG
Ictal onset zones	EEG MEG Ictal SPECT
Epileptogenic lesion	CT or MRI
Functional deficit	Neurological examination Neuropsychological testing Interictal EEG focal slow activity PET, SPECT

มหาวิทยาลัยมหิดล ดณะแพทยตาสดร์ ศิริราชพยาบาล

Presurgical Evaluation

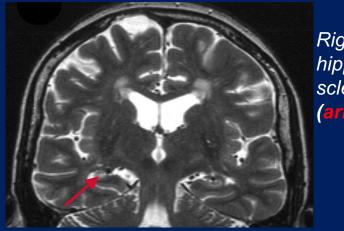
History and Physical Exam Video EEG monitoring Noninvasive, invasive Imaging MRI Functional MRI: PET, SPECT Neuropsychology Evaluation Comprehensive Patient Care Conference

 Presurgical work-up is time and labor-intensive and has cost implications.

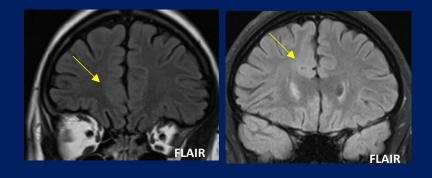
- Aura and other early SZ semiology help with the lateralize/localization of symptomatogenic zone.
- Ask from patient and witness.
- Neurological examination can identify focal neurological deficits define the functional deficit zone.

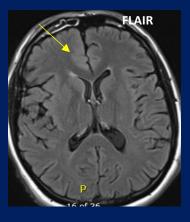
- Specific risk factors can help predict epileptogenic lesion.
- Febrile status epilepticus in infancy has a strong == hippocampal sclerosis.
- Meningitis and encephalitis
 - o<age 5 == hippocampal sclerosis</pre>
 - o>age 5 == neocortical epileptogenic zones.
- Earlier head trauma == hippocampal sclerosis.

- The interictal focal attenuation and focal slow activity Functional deficit zone
- Interictal epileptiform discharges Irritative zones
- EEG localization of seizure onset ictal onset zone
- Seizure semiology symptomatogenic zone: lateralizing and localization


Common semiology

- Head turning • Early – I/L TLE
 - Late forceful head turning preceding secondary generalization tends to be C/L.
- Oroalimentary automatisms \rightarrow temporal lobe
- Dystonic posturing is a strong C/L basal ganglia
- Postictal aphasia dominant hemisphere
- Well-formed ictal speech nondominant hemisphere
- Ictal vomiting, ictal spitting, ictal drinking nondominant hemisphere


Lesion – epileptogenic lesion For MTS, MRI should include oblique coronal images perpendicular to the axis of the hippocampus, including T1-W, T2-W and FLAIR

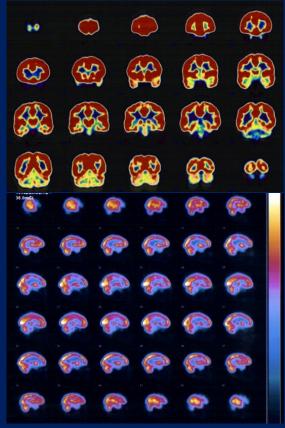


Right hippocampal sclerosis (arrow)

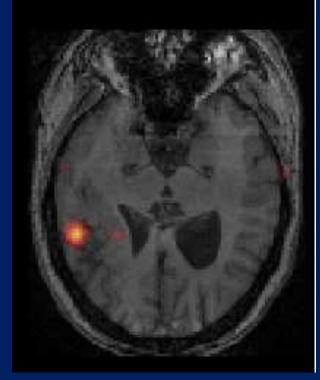
Focal cortical dysplasia

Cortical thickening and hyperintense FLAIR lesion at the right anterior cingulate region.

Functional Imaging


• PET

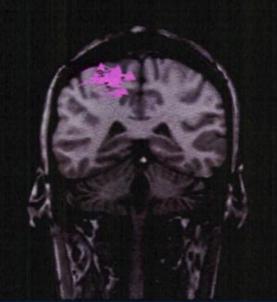
hypometabolism interictally
 Functional deficit zone


• SPECT

hypoperfusion interictally
 hyperperfusion ictally – ictal
 onset zone

• PET and/or SPECT may be coregistered with MRI

มหาวิทยาลัยมหิดล ดณะแพทยศาสตร์ ศรีรราชพยยามาล



SISCOM (SPECT with MRI coregistration) in a patient with extratemporal epilepsy

Presurgical Evaluation- MEG

Magnetoencephalography (MEG)
 Magnetic source localization of interictal epileptiform discharges
 Functional mapping

้มหาวิทยาลัยมหิด ดณะแพทยศาสดร์ ศิริราชพยาบาล

Testing for Surgical Candidates

Visual fields

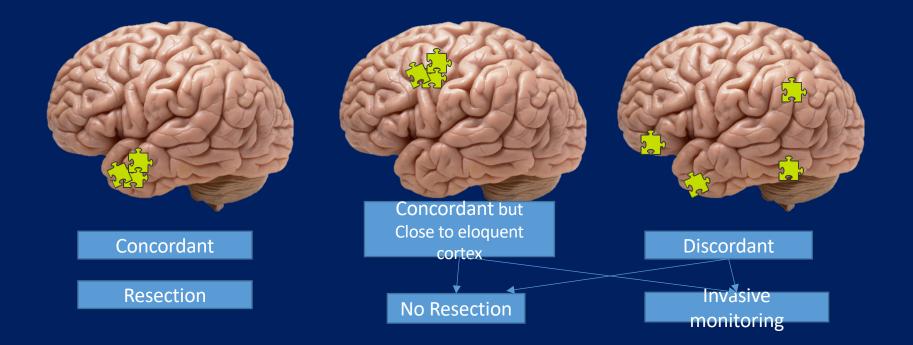
Formal testing if resection will endanger vision Intracarotid Amobarbital Procedure (Wada) Language dominance Verbal memory Prediction of postoperative decline **NPI Testing includes:** IQ battery of tests Language localization Memory- verbal and visual localization Visuospatial function Attention/Executive Motor- coordination and speed

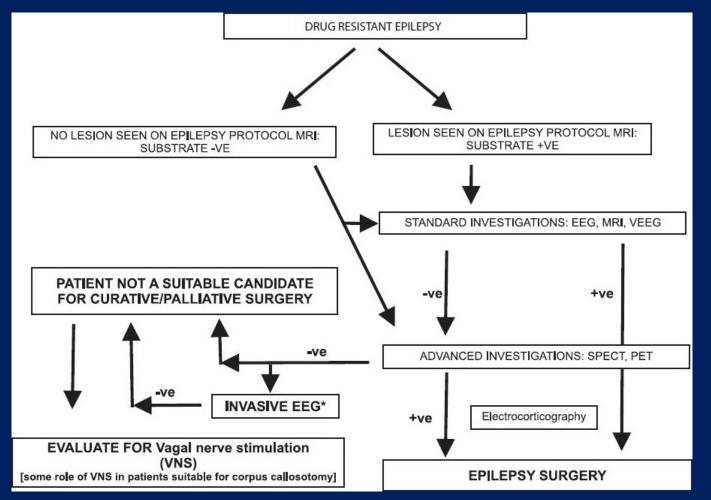
Presurgical evaluation - fMRI

fMRI- language lateralization, hippocampus function, epileptogenic focus assessment

Patient with left TLE

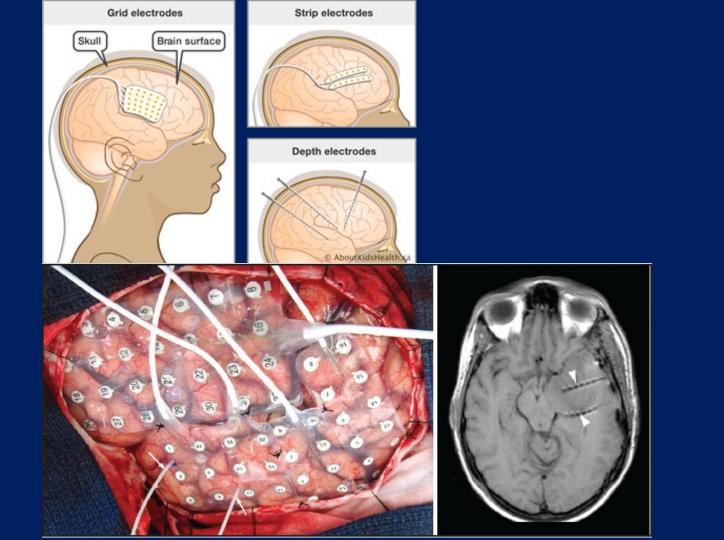
Left: Language mapping with verb generation task - activation in Broca's and Wernicke's areas.

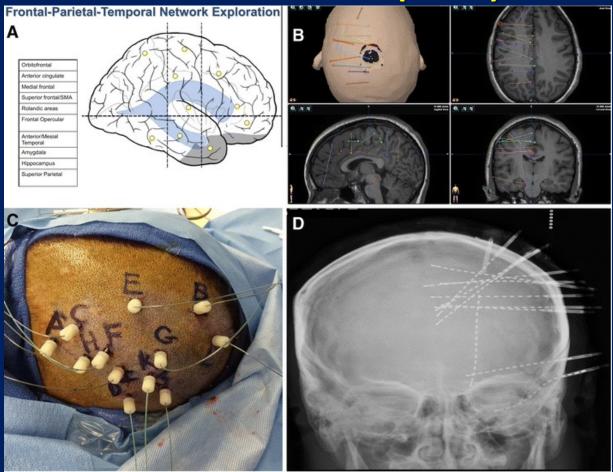

Right: Memory localization with picture encoding task decreased activation in the left hippocampus.



Comprehensive Patient Care Conference for Surgical Candidates

- Epileptologist presents the patient
- Video-EEG studies are reviewed
 - Semiology
 - Interictal EEG morphology
 - Ictal EEG morphology
- Neuroradiologist discusses imaging studies
- Neuropsychology results are examined
- Neurosurgeon delineates surgical options
- Discussion of risks/benefits/outcomes
- Group consensus

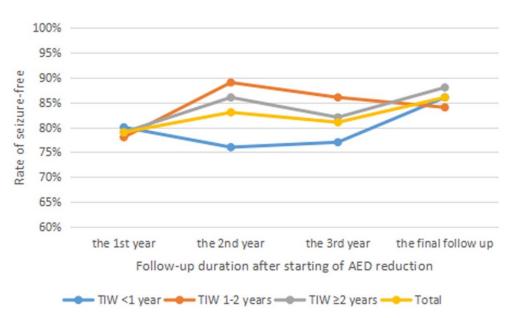



Annals of Indian Academy of Neurology 2010 13(2):87-93

Invasive intracranial monitoring

- Conditions require Invasive intracranial monitoring
- 1. SZs are lateralized but not localized. Seizures are localized but not lateralized.
- 2. SZ are neither localized nor lateralized.
- 3. SZ localization is discordant with other data.
- 4. SZ onset to functional tissue must be determined: close to eloquent cortex.

Stereotactic EEG (SEEG)



Postoperative ASM withdrawal

- Early withdrawal (at 6 or 9 months)
- Late withdrawal (after 1 or 2 years)
- What to concern? side effects of ASMs vs recurrent SZ
- Overall studies; SZ after surgery easier to control than pre-op

TIW; time interval to start ASM withdrawal

- No significant Different
- 50% SZ recurrent
- 62% SZ free at final f/u
- Favorable factor at 1 year;

Temporal lobe surgery

• Unfavorable; post-op GTC

Zhang L, et al. Scientific REPORTS (2018) 8:13782 DOI:10.1038/s41598-018-31092-3

Summary

- DRE takes 1/3 of all epilepsy patients
- Surgical treatment should be considered if possible; lesion, temporal.
- Delay epilepsy surgery showed poorer outcome, so referal to epilepsy center should be offered in DRE patients.

