Surgical Management in ICODE LOIGE LOIGE

Teeradej Srikijvilaikul, MD. Neurological Institute of Thailand

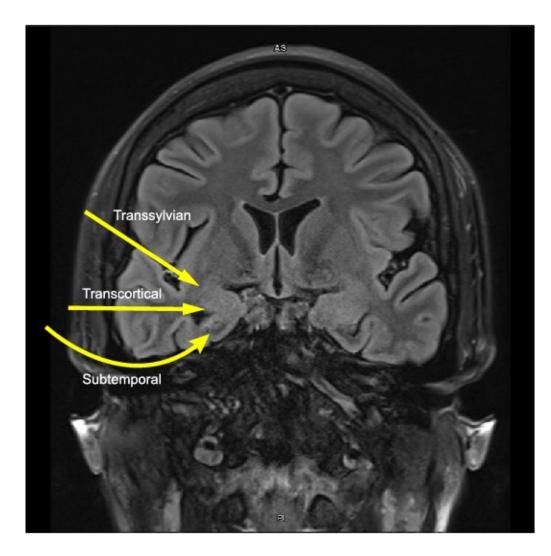
Temporal lobe epilepsy

- Medial temporal lobe epilepsy (MTLE)
 - MTLE- hippocampal sclerosis (HS)
 - MTLE with medial structural lesion other than HS or MRI-negative
- Lateral temporal lobe epilepsy (LTLE)

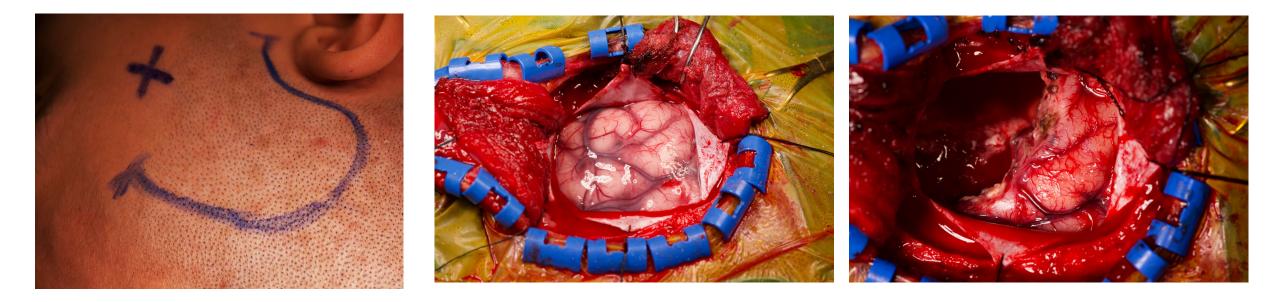
ORIGINAL ARTICLE

Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery

Diagnosis	Category	Patients with Condition (N = 9523)	Age at Onset of Seizures	Duration of Epilepsy	Localizat	ion†
		no. (%)	years		lobe	%
Hippocampal sclerosis	Hippocampal sclerosis	3463 (36.4)	11.3±10.1	22.5±12.7	Temporal	100.0
Ganglioglioma	Tumor	986 (10.4)	12.1±10.3	11.4±10.4	Temporal	82.5
Focal cortical dysplasia type II	Malformation of cortical development	859 (9.0)	5.6±6.9	14.0±11.7	Frontal	51.6
No lesion	No lesion	738 (7.7)	13.0±10.6	15.4±10.6	Temporal	67.7
Dysembryoplastic neuroepithelial tumor	Tumor	565 (5.9)	14.0±10.9	12.0±10.7	Temporal	68.1
Glial scar	Glial scar	461 (4.8)	10.7±10.3	14.8±11.1	Temporal	37.1
Cavernous angioma	Vascular malformation	431 (4.5)	25.4±13.0	12.3±11.2	Temporal	74.7
Mild malformation of cortical development	Malformation of cortical development	279 (2.9)	9.6±10.0	13.7±11.5	Temporal	49.1
Focal cortical dysplasia type I	Malformation of cortical development	268 (2.8)	7.4±9.6	9.3±8.1	Temporal	35.1
Focal cortical dysplasia not otherwise specified	Malformation of cortical development	206 (2.2)	8.0±8.0	13.4±11.5	Temporal	45.1
Total		8256 (86.7)	11.6±10.8	17±12.6	Temporal	71.9

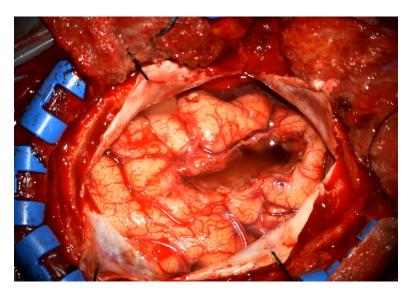

Treatment options

Resection


- Anterior temporal lobectomy (ATL)
- Selective amygdalohippocampectomy (SeIAH)
- Minimally invasive surgery
 - Stereotactic Radiofrequency Thermocoagulation (RF-TG)
 - Laser Interstitial Thermal Therapy (LITT)
 - Stereotactic Radiosurgery (SRS)
 - MR-guided focused ultrasound (MRgFUS)
- Neuromodulation
 - Deep brain stimulation (DBS)
 - Responsive Neurostimulation (RNS)

Resection

- Temporal lobectomy (Corticoamygdalohippocampectomy)
 - Standard temporal lobectomy
 - Anterior temporal lobectomy
- Selective amygdalohippocampectomy (SeIAH)
 - Transylvian AH
 - Transcortical AH
 - Subtemporal AH
- Hippocampal transection



Anterior temporal lobectomy

Selective Amygdalohippocampectomy (SeIAH)

ATL vs SelAH

Case #1

- Female 61 years old, teacher
- Seizure onset @ 12 years
- PH: Head injury +ve
- MRI: Left HS
- Video EEG: Left F-T onset

Case # 2

- Female 32 years old
- Seizure onset @ 4 months
- PH: Family Hx +ve
- MRI: Left HS
- Video EEG: Left F-T onset

Case # 1 61 years old female				
Full IQ	85 (Low average)			
Verbal IQ	89 (Low average)			
Performance IQ	82 (Low average)			
Immediate auditory	105 (Average)			
Immediate visual	103 (Average)			
Immediate memory	105 (Average)			
Auditory delay	111 (High average)			
Visual delay	112 (High average)			
Auditory recognition	90 (Average)			
General memory	108 (Average)			
Working memory	102 (Average)			

Case # 2 32 years old female				
Full IQ	81 (Low average)			
Verbal IQ	74 (Borderline)			
Performance IQ	82 (Low average)			
Immediate auditory	59 (Extremely low)			
Immediate visual	81 (Low average)			
Immediate memory	63 (Extremely low)			
Auditory delay	64 (Extremely low)			
Visual delay	91 (Average)			
Auditory recognition	60 (Extremely low)			
General memory	69 (Extremely low)			
Working memory	105 (Average)			

ATL or SeIAH

ARTICLE

Anterior temporal lobectomy versus selective amygdalohippocampectomy in patients with mesial temporal lobe epilepsy

Lobectomia temporal anterior versus amigdalohipocampectomia seletiva para epilepsia de lobo temporal mesial

Fábio A. Nascimento¹, Luana Antunes Maranha Gatto², Carlos Silvado³, Maria Joana Mäder-Joaquim4, Marlus Sidney Moro², Joao Candido Araujo²

Long-term seizure outcome after mesial temporal lobe epilepsy surgery: corticalamygdalohippocampectomy versus selective amygdalohippocampectomy

TANER TANRIVERDI, M.D.,¹ ANDRE OLIVIER, M.D., PH.D.,¹ NICOLE POULIN, R.N., M.ED.,¹ FREDERICK ANDERMANN, M.D.,² AND FRANÇOIS DUBEAU, M.D.²

Departments of 'Neurosurgery and 'Neurology, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada

- Seizure and neuropsychological outcomes did not differ.
- Slight superiority on postoperative verbal memory in SelAH on dominant side

Selective amygdalohippocampectomy versus standard temporal lobectomy in patients with mesial temporal lobe epilepsy and unilateral hippocampal sclerosis

Anne-Sophie Wendling^{a,b,c}, Edouard Hirsch^{b,c}, Ilona Wisniewski^{a,b,c}, Céline Davanture^b, Isabell Ofer^a, Josef Zentner^d, Sofia Bilic^a, Julia Scholly^a, Anke M. Staack^a, Maria-Paula Valenti^b, Andreas Schulze-Bonhage^e, Pierre Kehrli^f, Bernhard J. Steinhoff^{a,*} SelAH had better visual, verbal short term memory, long-term, working memory than ATL J Neurosurg 104:70-78, 2006

Seizure and memory outcome following temporal lobe surgery: selective compared with nonselective approaches for hippocampal sclerosis

ELISEU PAGLIOLI, M.D., PH.D., ANDRÉ PALMINI, M.D., PH.D., MIRNA PORTUGUEZ, PH.D., EDUARDO PAGLIOLI, M.D., PH.D., NEY AZAMBUJA, M.D., M.SC., JADERSON COSTA DA COSTA, M.D., PH.D., HÉLIO FERNANDES DA SILVA FILHO, M.D., JOSÉ VICTOR MARTINEZ, M.D., M.SC., AND JOÃO RUBIÃO HOEFFEL, M.D.

Porto Alegre Epilepsy Surgery Program, Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sol, Porto Alegre, Rio Grande do Sul, Brazil Memory outcome after temporal lobe epilepsy surgery: corticoamygdalohippocampectomy versus selective amygdalohippocampectomy

Clinical article

TANER TANRIVERDI, M.D.,¹ ROY WILLIAM ROLAND DUDLEY, M.D., PH.D.,¹ Alya Hasan, M.D.,¹ Ahmed Al Jishi, M.D.,¹ Qasim Al Hinai, M.D.,¹ Nicole Poulin, R.N., M.Ed.,¹ Sophie Colnat-Coulbois, M.D., Ph.D.,² and André Olivier, M.D., Ph.D.¹

¹Department of Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and ²Department of Neurosurgery, University Hospital of Nancy, France

- Similar favorable seizure control (70%)
- Better chance of memory improvement in verbal memory esp. dominant by transcortical AH

- Both ATL, SeIAH had decreased verbal memory
- Old age, seziure frequency, duration of epilepsy

Meta-analysis

Selective amygdalohippocampectomy versus anterior temporal lobectomy in the management of mesial temporal lobe epilepsy: a meta-analysis of comparative studies

A systematic review

WEN-HAN HU, M.D., PH.D.,¹ CHAO ZHANG, M.D.,² KAI ZHANG, M.D., PH.D.,² FAN-GANG MENG, M.D., PH.D.,¹ NING CHEN, M.D.,² AND JIAN-GUO ZHANG, M.D., PH.D.^{1,2}

¹Beijing Neurosurgical Institute and ²Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Conclusions. Selective amygdalohippocampectomy statistically reduced the odds of being seizure free compared with ATL, but the clinical significance of this reduction needs to be further validated by well-designed randomized trials. Selective amygdalohippocampectomy did not have better outcomes than ATL with respect to intelligence. *(http://thejns.org/doi/abs/10.3171/2013.8.JNS121854)*

Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery

Conclusions: Standard ATL confers an improved chance of achieving freedom from disabling seizures in patients with TLE. Improved seizure freedom must be balanced against the neuropsychological impact of each procedure. A randomized controlled trial is justified. *Neurology*[®] 2013;80:1669-1676

RESEARCH PAPER

Epilepsy

Systematic review and network meta-analysis of resective surgery for mesial temporal lobe epilepsy Puneet Jain,¹ George Tomlinson,^{2,3} Carter Snead,¹ Beate Sander,^{2,3} Elysa Widjaja^{1,3,4} **Conclusion** Direct evidence, indirect evidence and NMA did not identify a difference in seizure-free outcome of ATL versus SAH.

Predictive factors

- Epilepsy duration is the most important predictor for long-term surgical outcome (Jansky J. Brain 2005)
 - Surgery for TLE-HS should be performed as early as possible
- History of status epilepticus, Preoperative use of intracranial EEG (Mathon B. Epilepsia 2017)
- History of febrile seizure, ATL predicted good outcome, Dysmnesic and olfactory aura predicted unfavorable outcome (Dalio MTRP. Front Neurol 2022)
- Secondarily generalized tonic-clonic seizures (2nd GTC) (Henessy MJ. Acta Neurol Scand 2001)
- Unilateral MRI abnormality (Arruda F. Ann Neurol 1996)

Outcomes

	1year (n= 8247)	2 years (n=8191)	5 years (n=5577)
Hippocampai scierosis	76-0% (74-78; 2359/3103)	71-5% (70-73; 2108/2948)	70-3% (68-72; 14/1/2092)
LEAT	80-3% (78-82; 1063/1323)	77-5% (75-80; 1027/1325)	75-9% (73-79; 681/897)
LGNET	71-6% (60-81; 58/81)	70-6% (61-79; 72/102)	68-9% (57-79; 51/74)
DNET	77-7% (74-81; 390/502)	74-8% (71-79; 362/484)	74-6% (70-79; 256/343)
Ganglioglioma	83-1% (80-86; 557/ 670)	80-4% (77-83; 540/672)	77-4% (73-81; 336/434)
LEAT-other	82-9% (72-90; 58/70)	79-1% (67-88; 53/67)	82-6% (68-92; 38/46)
FCD type II	69-4% (66-73; 496/715)	64-9% (62-68; 517/796)	67-4% (63-71; 370/549)
No lesion	60-2% (56-64; 435/723)	53-5% (50-57; 396/740)	51-2% (47-56; 247/482)
Gliosis	60-3% (56-64; 330/547)	53-2% (49-57; 311/585)	51-1% (46-56; 182/356)
Normal tissue	597% (52-67; 105/176)	54-8% (47-63; 85/155)	51-6% (43-61; 65/126)
Vascular malformation	77-1% (73-81; 357/463)	74% (70-78; 328/443)	72-2% (67-77; 205/284)
Vascular-other	72-5% (63-80; 87/120)	65-8% (57-74; 79/120)	61-6% (50-72; 53/86)
Cavemoma	78-7% (74-83; 270/343)	77-1% (72-81; 249/323)	76-8% (70-82; 152/198)
FCD type I and mlld MCD	54-7% (49-60; 198/362)	50% (45-55; 213/426)	51-9% (46-58; 153/295)
MIIdMCD	50-3% (42-59;74/147)	45-5% (38-53; 81/178)	48-9% (40-57; 68/139)
FCD type I	57-7% (51-64; 124/215)	53-2% (47-60; 132/248)	54-5% (46-62; 85/156)
MCD-other	53-4% (48-58; 220/412)	52-3% (47-57; 212/405)	51-2% (45-57; 148/289)
Hypothalamic hamartoma	43·2% (34-52; 54/125)	43% (34-53; 46/107)	49-3% (38-61; 36/73)
Tuber	52-1% (43-61; 62/119)	50% (41-59; 58/116)	45-4% (35-56; 44/97)
Other	61-9% (54-69; 104/168)	59-3% (52-66; 108/182)	57-1% (48-66; 68/119)
FCD-not otherwise specified	71-3% (67-76; 303/425)	69-7% (65-74; 288/413)	59-5% (52-66; 122/205)
Non-LEAT	72-3% (67-77; 251/347)	68-4% (63-73; 212/310)	67-6% (61-74; 152/225)
Oligoden- drogilorna	67-2% (58-75; 80/119)	66-4% (56-75;71/107)	67-9% (56-78; 55/81)
Tumour-other	75-0% (69-80; 171/228)	69-5% (63-76; 141/203)	67-4% (59-75; 97/144)
Gilal scar	62-1% (56-68; 149/240)	59-4% (53-65; 155/261)	56-1% (48-64; 96/ 171)
Encephalitis	67-2% (58-75; 90/134)	59-7% (50-68; 74/124)	54-5% (44-65; 48/88)
Encephalitis- other	51-8% (38-65; 29/56)	42-3% (29-57; 22/52)	50% (34-66; 18/36)
Rasmussen	78-2% (67-86; 61/78)	72-2% (60-82; 52/72)	57-7% (43-71; 30/52)
Total	71-8% (71-73; 5921/8247)	67-5% (66-69; 5530/8191)	66-2% (65-67; 3693/5577)
Data are % (95% Cl; n/1	N). Freedom from disabling seizu	res defined as Engel class 1. LEAT	-low-grade epilepsy associated

Data are % (95% C); ry(N). Freedom from disabling seizures defined as Engel class 1. LEAT=low-grade epilepsy associated neuroepithelial tumour. LGNET=low-grade neuroepithelial tumour. DNET=dysembryoplastic neuroepithelial tumour. FCD=focal cortical dysplasia. MCD=malformation of cortical development.

Table 2: Freedom from disabling seizures at 1, 2, and 5 years after surgery, by histopathological diagnosis

	1 year (n=5861)	2 years (n=5461)	5 years (n=3753)
Hippocampal scierosis	5.5% (5-7; 123/2228)	13-2% (12-15; 257/1940)	32-8% (30-35; 423/1290
LEAT	5.2% (4-7; 48/924)	22-9% (20-26; 205/896)	47-1% (43-51; 288/612)
LGNET	4.9% (1-18; 2/41)	17-7% (10-30; 11/62)	42-3% (29-57; 22/52)
DNET	6-9% (5-10; 27/392)	21-4% (17-26;74/346)	44-7% (38-51; 109/244)
Ganglioglioma	3.9% (2-6; 18/458)	25-2% (21-29; 115/457)	51-0% (45-57; 149/292)
LEAT-other	3.0% (0-18; 1/33)	16-1% (6-34; 5/31)	33-3% (16-55; 8/24)
FCD type II	5.8% (4-8; 29/504)	15-8% (13-19; 86/545)	34-9% (30-40; 147/421)
No lesion	3-4% (2-5; 20/593)	10-4% (8-13; 61/584)	20-2% (16-25; 77/381)
Gliosis	3·1% (2-5; 14/454)	10-6% (8-14; 50/470)	22-1% (18-27; 65/294)
Normal tissue	4·3% (2-10; 6/139)	9-6% (5-17; 11/114)	13-8% (8-23; 12/87)
Vascular malformation	6-7% (4-10; 21/315)	24-8% (20-30; 74/298)	36-6% (30-44;70/191)
Vascular-other	11.5% (6-21; 10/87)	27-4% (18-38; 23/84)	36-5% (25-50; 23/63)
Cavernoma	4.8% (3-9; 11/228)	23-8% (18-30; 51/214)	36-7% (29-46; 47/128)
FCD type I and mild MCD	1.6% (0-4; 4/258)	7-1% (4-11; 19/268)	19-5% (15-25; 43/221)
MIId MCD	0 (0-5; 0/102)	9-3% (5-16; 11/118)	25-3% (17-35; 25/99)
FCD type I	2.6% (1-7; 4/156)	5-3% (3-11; 8/150)	14-8% (9-23; 18/122)
MCD-other	9-3% (6-14; 23/247)	20-3% (15-26; 44/217)	30-1% (23-38; 52/173)
Hypothalamic hamartoma	16-4% (9-28; 11/67)	19-6% (10-34; 9/46)	21-2% (10-39; 7/33)
Tuber	3.1% (1-12; 2/64)	11-3% (5-22;7/62)	21-6% (12-36; 11/51)
Other	8-6% (4-16; 10/116)	25-7% (18-35; 28/109)	38-2% (28-49; 34/89)
FCD-not otherwise specified	6-4% (4-10; 20/314)	19-7% (15-25; 59/300)	37% (29-45; 57/154)
Non-LEAT	6-5% (4-11; 16/246)	19-5% (14-26; 40/205)	32-9% (26-41; 50/152)
Oligoastrocytoma	6-8% (3-15; 6/88)	14-7% (8-25; 11/75)	31-2% (21-44; 20/64)
Tumour-other	6-3% (3-12; 10/158)	22-3% (16-31; 29/130)	34-1% (25-45; 30/88)
Gilal scar	5.6% (3-11; 8/144)	12-3% (7-20; 16/130)	24-3% (17-34; 25/103)
Encephalitis	12.5% (7-22; 11/88)	25-6% (17-37; 20/78)	32-7% (21-47; 18/55)
Encephalitis-other	10-3% (3-28; 3/29)	21-4% (9-41; 6/28)	15-8% (4-40; 3/19)
Rasmussen	13-6% (6-26; 8/59)	28% (17-43; 14/50)	41-7% (26-59; 15/36)
Total	5.5% (5-6; 323/5861)	16-1% (15-17; 881/5461)	33-3% (32-35; 1250/375

Data are % (95% Cl; rr/N). Freedom from disabling seizures defined as Engel dass 1. LEAT-low-grade epilepsy associated neuroepithelial tumour. LGNET-low-grade neuroepithelial tumour. DNET-dysembry oplastic neuroepithelial tumour. FCD-focal cortical dysplasia. MCD-malformation of cortical development.

Table 3: Freedom from disabiling selzures (Engel class 1) and complete discontinuation of antieplieptic drugs at 1, 2, and 5 years after surgery, by histopathological diagnosis

Outcomes after Temporal Lobectomy for Temporal Lobe Epilepsy with Hippocampal Sclerosis

Teeradej Srikijvilaikul MD*, Sukulya Lerdlum MD**, Supatporn Tepmongkol MD**, Shanop Shuangshoti MD***

* Department of Neurosurgery, Prasat Neurological Institute, Bangkok, Thailand ** Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand *** Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Years of follow-up	Seizure free	Not seizure free	Total
	n (%)	n (%)	
5	93 (83.0)	19 (17.0)	112
6	78 (82.1)	17 (17.9)	95
7	70 (80.5)	17 (19.5)	87
8	57 (76.0)	18 (24.0)	75
9	41 (77.4)	12 (22.6)	53
10	32 (74.4)	11 (25.6)	43
11	3 (100)	-	3

Table 2. The number of patients and seizure outcomes in

longitudinal follow-up

Long-Term Seizure Outcome after Temporal Lobectomy for Hippocampal Sclerosis

Teeradej Srikijvilaikul MD^{1,2}, Chusak Limotai MD^{3,4}

¹ Department of Neurosurgery, Prasat Neurological Institute, Bangkok, Thailand
 ² Prasat Neurological Epilepsy Center, Prasat Neurological Institute, Bangkok, Thailand
 ³ Chulalongkorn Comprehensive Epilepsy Center of Excellent, The Thai Red Cross Society, Bangkok, Thailand
 ⁴ Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Results: Sixty one patients (54.5%) were seizure free for the entire period after surgery. One hundred patients (89.3%) were seizure free for at least two years at the last follow-up. Forty three patients (38.4%) were able to stop antiepileptic medications. The mean follow-up was 8.1±1.9 years (range 5 to 11 years). A preoperative secondarily generalized tonic-clonic seizure was predictor for poor seizure outcome.

Complications After Surgery for Mesial Temporal Lobe Epilepsy Associated with Hippocampal Sclerosis

Bertrand Mathon^{1,6}, Vincent Navarro^{2,5,6}, Franck Bielle^{3,6}, Vi-Huong Nguyen-Michel², Alexandre Carpentier^{1,5,6}, Michel Baulac^{2,5,6}, Philippe Cornu^{1,6}, Claude Adam^{2,5}, Sophie Dupont^{2,4-6}, Stéphane Clemenceau¹

Reference (Period)	Institution	Surgical Approach	Number	Complications Overall/ Major/Permanent	Death
Rydenhag ¹¹ (1990—1995)	Swedish National Epilepsy Surgery Register, Sweden	ATL	168	12.4%/2.9%/?	0%
Behrens ¹² (1987-1997)	University of Bonn, Bonn, Germany	ts SAH	279	?/4.7%/2.3%	0%
Salanova ¹³ (1984–1999)	Indiana University, Indianapolis, Indiana, USA	?	104	9.5%/5.8%/1.3%	0%
Sindou ¹⁴ (1994-2003)	Pierre Wertheimer Hospital, Lyon, France	ATL, ts SAH	100	19.0%/7.0%/2.0%	0%
Bate ¹⁵ (1996-2004)	Walton Centre, Liverpool, GB	SAH, ATL	114	10.5%/6.1%/2.6%	0%
Tanriverdi ¹⁶ (1976-2006)	MNI, Montreal, Canada	?	1232	5.5%/2.8%/?	0%
Bandt17 (1997-2007)	Washington University, St Louis, MO, USA	tcT2 SAH	76	?/3.0%/0.0%	0%
lachinski ¹⁸ (1998–2010)	Curitiba Institute, Curitiba, Brazil	ATL	67	17.9%/13.4%/0.0%	0%
Vale ³ (1998–2012)	University of South Florida, Tampa, Florida, USA	tcT3 SAH	483	?/2.7%/0.2%	0%
Yang ¹⁹ (2004–2012)	Fuzhou General Hospital, Fuzhou, China	CAH	683	?/1.8%/?	0%
Josephson ²⁰ (1997-2012)	Meta-analysis (5 studies)	SAH	309	?/?/0.0—3.1%	?
		ATL	392	?/?/0.0—2.4%	
Current series (1990-2015)	La Pitié-Salpêtrière University Hospital, Paris, France	Total	389	15.4%/4.1%/0.5%	0%
		tcT1 SAH	144	12.5%/2.1%/0.0%	
		ts SAH	36	16.7%/2.8%/0.0%	
		ATL	209	17.2%/5.7%/1.0%	

Table 6. Morbidity and Mortality of MTLE Surgery: Literature Review

The boldface in the footnote is the result of our series compared to the literature.

ATL, anterior lobectomy lobectomy; ts, transylvian; SAH, selective amygdalohippocampectomy; tc, transcortical; T2, middle temporal gyrus; T3, inferior temporal gyrus; CAH, corticoamygdalohippocampectomy; T1, superior temporal gyrus; ?, not applicable.

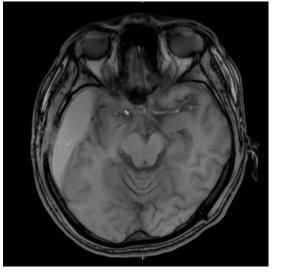
Complications of Epilepsy Surgery: Prasat Neurological Institute Experiences

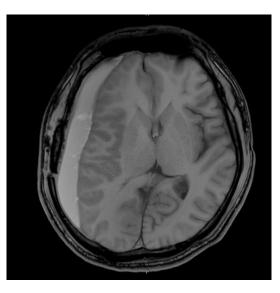
Teeradej Srikijvilaikul MD^{1,2}

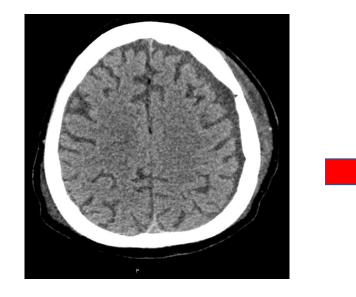
¹ Department of Neurosurgery, Prasat Neurological Institute, Bangkok, Thailand ² Prasat Neurological Epilepsy Center, Prasat Neurological Institute, Bangkok, Thailand

Type of surgery	Total n	Surgical complications, n (%)	Transient neurological complications, n (%)	Permanent neurological complications, n (%)
Temporal lobe surgery	125			
Temporal lobectomy + mesial structures	107 (100)	14 (13.1)	9 (8.4)	3 (2.8)
Temporal lobectomy sparing mesial structures	2 (100)	0 (0.0)	0 (0.0)	0 (0.0)
Selective amygdalohippocampectomy Lesionectomy/corticectomy	4 (100) 12 (100)	2 (50.0) 0 (0.0)	0 (0.0) 0 (0.0)	0 (0.0) 0 (0.0)

Table 1. Operative procedures and type of complications

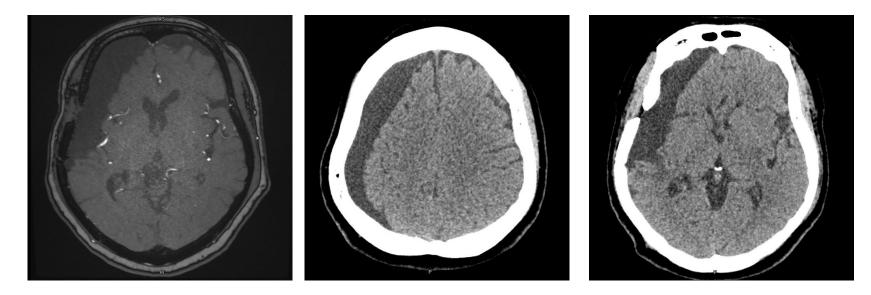

•			
Type of operations	Surgical complications (n)	Transient neurological complications (n)	Permanent neurological complications (n)
TL + mesial	 Infection 11 (meningitis 10, bone flap infection 1) Hematoma 4 (CSDH 1, ICH 3) CSF rhinorrhea 1 Subdural hygroma Upper GI bleeding 1 Drug induced hepatitis 1 	- Hemiparesis 2 - Dysphasia 1 - CN paresis (CN IV 2, CN VII branch 1)	- Hemiparesis 2 - Dysphasia 2 - Numbness 1
TL excluding mesial	-	-	- Dysphasia 1
Selective AH	- Drug allergy 1	-	-

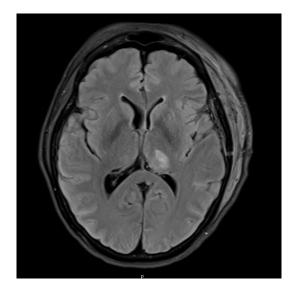




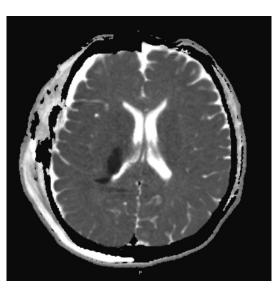
Intracerebral hemorrhage

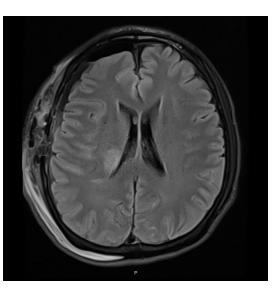
Chronic subdural hematoma





Subdural hygroma





Right sided numbness

Ischemia

Left leg weakness

Outcome

Case #1 SelAH

- Immediate postop motor aphasia
- Gradually improved
- Seizure free 1 year
- Postop EEG: Sharp wave left F-T

- Case # 2 ATL
- No complications
- Seizure free 1 year

Patient attitudes

- 62% of patients would only consider open surgery as a last option
- Brain surgery having a mean dangerousness of 8.3/10 among epilepsy patients
- 51% of the patient would not consider the treatment even if it was guaranteed to stop their seizures without causing any deficits

Physician atttitudes

Ablative Surgery

Stereotactic radiofrequency thermocoagulation

Clinical Study

Stereotactic ^{and} Functional Neurosurgery

Stereotact Funct Neurosurg 2014;92:372–380 DOI: 10.1159/000366003

Different Surgical Approaches for Mesial Temporal Epilepsy: Resection Extent, Seizure, and Neuropsychological Outcomes

Hana Malikova^{a, f} Lenka Kramska^b Zdenek Vojtech^{c, g} Roman Liscak^d Jan Sroubek^e Jiri Lukavsky^h Rastislav Druga^f

Departments of ^aRadiology, ^bClinical Psychology, ^cNeurology, ^dRadiation and Stereotactic Neurosurgery and ^eNeurosurgery, Epilepsy Center, Na Homolce Hospital, ^fInstitute of Anatomy, 2nd Medical Faculty, and ^gDepartment of Neurology, 3rd Medical Faculty, Charles University in Prague, and ^hInstitute of Psychology, Academy of Sciences of the Czech Republic, Prague, Czech Republic Epilepsy Research (2013) 106, 423-432

Stereotactic radiofrequency amygdalohippocampectomy: Two years of good neuropsychological outcomes

Hana Malikova^{a, •, 1}, Lenka Kramska^{b, 1}, Zdenek Vojtech^b, Jiri Lukavsky^c, Roman Liscak^d

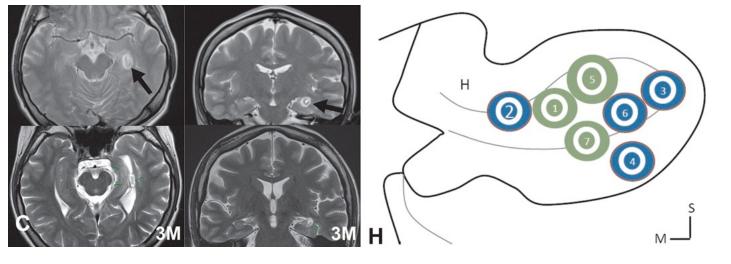
^a Epilepsy Center Na Homoice Hospital, Department of Radiology, Roentgenova 2, 150 00 Prague 5, Czech Republic
^b Epilepsy Center Na Homoice Hospital, Department of Neurology, Roentgenova 2, 150 00 Prague 5, Czech Republic
^c Institute of Psychology, Academy of Sciences of the Czech Republic, Politickych veznu 936/7, 110 00 Prague 1, Czech Republic
^d Epilepsy Center Na Homoice Hospital, Department of Stereotactic and Radiation Neurosurgery, Roentgenova 2, 150 00 Prague 5, Czech Republic

Stereotactic radiofrequency amygdalohippocampectpmy

(SAHE) vs Standard temporal lobectomy (TL)

- No difference in seizure free outcome 76%
- Good neuropsychological outcomes in SAHE

CLINICAL ARTICLE


J Neurosurg 131:781-789, 2019

Efficacy of limited hippocampal radiofrequency thermocoagulation for mesial temporal lobe epilepsy

Ching-Yi Lee, MD, 1 Han-Tao Li, MD, 2 Tony Wu, MD, PhD, 2 Mei-Yun Cheng, MD, PhD, 2 Siew-Na Lim, MD, PhD, 2 and Shih-Tseng Lee, MD 1

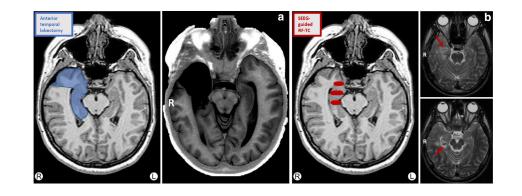
¹Department of Neurosurgery; and ²Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan

- MTLE (HS 1/7)
- Mean seizure reduction 78%
- Seizure free 57% (FU 6 months)
- Good outcome correlated with location of RFTC target (dendate)
- Preservation of IQ, memory

SEEG-guided radiofrequency thermocoagulation

- No additional bleeding risk
- Accurate targeting seizure onset zone (previously delinated by intracranial recording)
- Multiple lesions can be performed
- Functional mapping through direct electrical stimulation on SEEG (anticipate possible adverse effects)
- Cognitive outcome, visual field

SEEG guided thermocoagulation


ORIGINAL COMMUNICATION

SEEG-guided radiofrequency coagulation (SEEG-guided RF-TC) versus anterior temporal lobectomy (ATL) in temporal lobe epilepsy

Alexis Moles^{1,2,3} · Marc Guénot^{1,4,5} · Sylvain Rheims^{4,6,7} · Julien Berthiller⁸ · Hélène Catenoix⁶ · Alexandra Montavont⁹ · Karine Ostrowsky-Coste⁹ · Sebastien Boulogne^{4,6} · Jean Isnard⁶ · Pierre Bourdillon^{1,4,10,11}

- None of SEEG-guide RF-TC patients group was seizure free
- ATL group 75.5% seizure free
- No memory impairment following SEEG-guided RF-TC
- MTLE (various etiologies)

Contents lists available at ScienceDirect

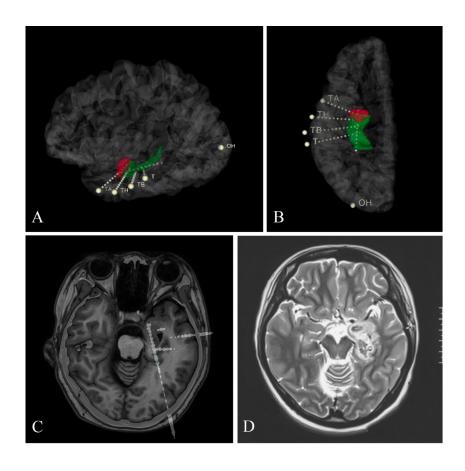
Seizure: European Journal of Epilepsy

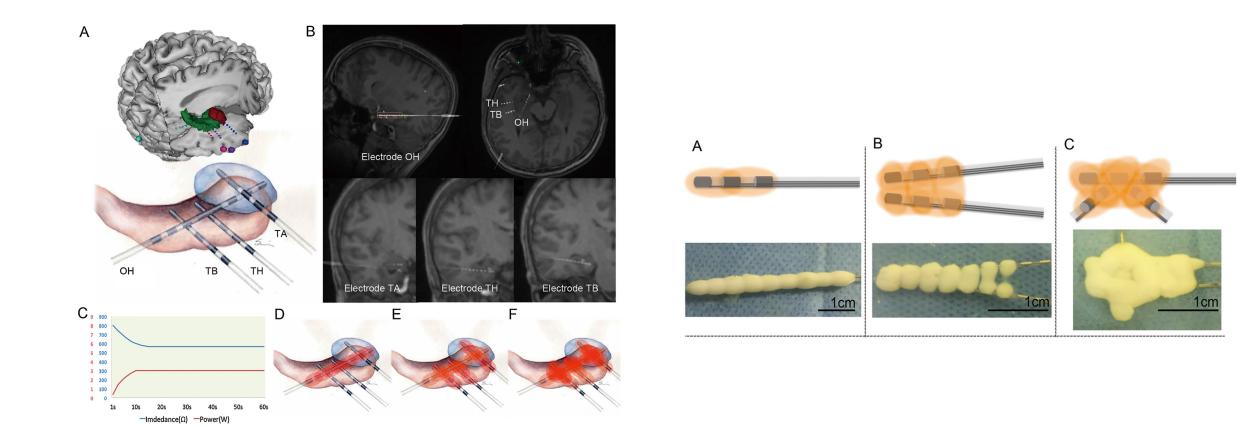
journal homepage: www.elsevier.com/locate/seizure

Optimized SEEG-guided radiofrequency thermocoagulation for mesial temporal lobe epilepsy with hippocampal sclerosis

Xiaotong Fan^{a,1}, Yongzhi Shan^{a,1}, Chao Lu^a, Yang An^a, Yihe Wang^a, Jialin Du^b, Di Wang^b, Penghu Wei^a, Robert S. Fisher^c, Yuping Wang^{b,d}, Liankun Ren^{b,**,2}, Guoguang Zhao^{a,d,*,2}

^a Department of Neurosurgery, Xuanwu Hospital, Capital Medical University (CMU), Beijing, China
 ^b Department of Neurology, Xuanwu Hospital, Capital Medical University (CMU), Beijing, China
 ^c Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
 ^d Beijing Institute for Brain Disorders, Beijing, China


- 95.2% patient had >90% decrease in seizure frequency, (Engel I 76.2%) @ 12 months
- Thermocoagulation versus anterior temporal lobectomy for mesial temporal lobe epilepsy with hippocampal sclerosis (STARTS)


STUDY PROTOCOL

Open Access

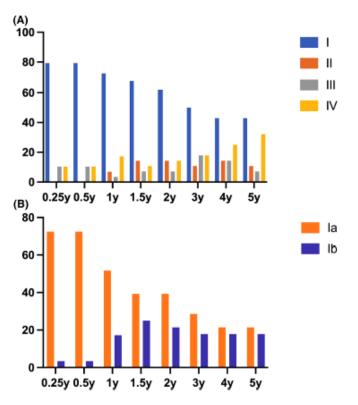
Stereotactic EEG-guided radiofrequency thermocoagulation versus anterior temporal lobectomy for mesial temporal lobe epilepsy with hippocampal sclerosis: study protocol for a randomised controlled trial

Yi-He Wang^{1†}, Si-Chang Chen^{1†}, Peng-Hu Wei¹, Kun Yang², Xiao-Tong Fan¹, Fei Meng¹, Jia-Lin Du³, Lian-Kun Ren³, Yong-Zhi Shan^{1*} and Guo-Guang Zhao^{1,4*}

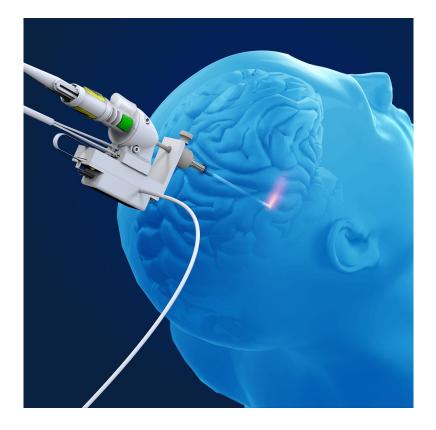
SEEG-guided three dimensional cross bonding RF-TC

DOI: 10.1002/epi4.12866

Epilepsia Open®


ORIGINAL ARTICLE

Stereo-electroencephalography-guided three-dimensional radiofrequency thermocoagulation for mesial temporal lobe epilepsy with hippocampal sclerosis: A retrospective study with long-term follow-up


Kaiwei Li^{1,2} | Jianwei Shi^{1,2} | Penghu Wei^{1,2} | Xiaosong He³ Yongzhi Shan^{1,2} | Guoguang Zhao^{1,2}

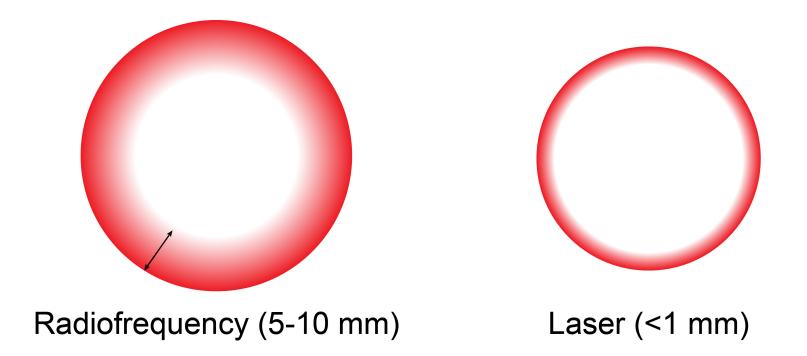
Engel I

- 72.41% (12 months)
- 67.86% (18 months)
- 62.07% (24 months)
- 50.00% (36 months)
- 42.86% (48 months)
- 42.86% (60 months)

MRI guided Laser Interstitial thermal therapy (MRgLITT)

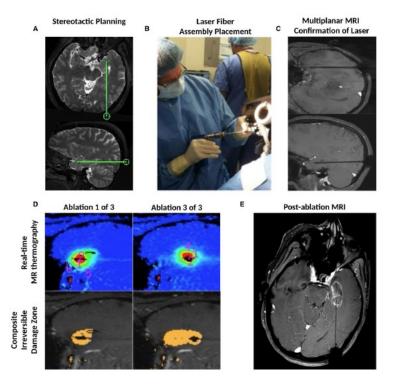
NeuroBlade (Monteris)

6 mm cylindrical tip, or side fire tip


 $\rm CO_2$ coolant

Visualase (Medtronic)

3- or 10 mm cylindrical tip


Saline coolant

Transition zone between dead and viable tissue

Advantage

- Low morbidity
- Small incision,
- Confirmation of targeting before ablation
- Immediate effect, minimal hospital stay
- Easily coupled to stereoEEG
- Increased acceptance/referrals
 - Patient refusing open surgery
 - Referring neurologists refusing open surgery
- Less suited to large onset zone

Accepted: 17 December 2017

DOI: 10.1111/epi.14004

FULL-LENGTH ORIGINAL RESEARCH

Epilepsia

Laser ablation is effective for temporal lobe epilepsy with and without mesial temporal sclerosis if hippocampal seizure onsets are localized by stereoelectroencephalography

Brett E. Youngerman¹ | Justin Y. Oh¹ | Deepti Anbarasan^{2,3} | Santoshi Billakota^{2,3} | Camilla H. Casadei^{2,3} | Emily K. Corrigan¹ | Garret P. Banks¹ | Alison M. Pack^{2,3} | Hyunmi Choi^{2,3} | Carl W. Bazil^{2,3} | Shraddha Srinivasan^{2,3} | Lisa M. Bateman^{2,3} | Catherine A. Schevon^{2,3} | Neil A. Feldstein^{1,3} | Sameer A. Sheth^{1,3} | Guy M. McKhann II^{1,3} | For the Columbia Comprehensive Epilepsy Center Co-Authors*

- Less invasive, shorter LOS and recovery, low morbidity
- Seizure free MTLE-HS 56%, MTLE 58%
- First option for MTLE?

Magnetic Resonance–Guided Laser Interstitial Thermal Therapy for Mesial Temporal Epilepsy: A Case Series Analysis of Outcomes and Complications at 2-Year Follow-Up

lahn Cajigas¹, Andres M. Kanner², Ramses Ribot², Amanda M. Casabella¹, Anil Mahavadi¹, Walter Jermakowicz¹, Samir Sur¹, Carlos Millan², Anita Saporta², Merredith Lowe², Naymee Velez-Ruiz², Gustavo Rey², George M. Ibrahim³, Michael E. Ivan¹, Jonathan R. Jagid¹

- Seizure free
 - MTS 68%, non-MTS 43% (p=0.23)
- Complications (7.7%)
 - Transient (1), permanent (1) homonymous hemianopia

LITERATURE REVIEW

Surgical Outcomes of Laser Interstitial Thermal Therapy for Temporal Lobe Epilepsy: Systematic Review and Meta-analysis

Panagiotis Kerezoudis¹, Veronica Parisi¹, W. Richard Marsh¹, Timothy J. Kaufman², Vance T. Lehman², Gregory A. Worrell³, Kai J. Miller¹, Jamie J. Van Gompel¹

- TLE seizure free 58%
- TLE & MTS seizure free 66%
- Not associated with total ablation volume, hippocampal volume, amygdala volume
- Complication 17% (visual field deficits)
 - Transient 10%
 - Permanent 5%

Comparison of minimally invasive and traditional surgical approaches for MTLE: A systematic review and meta-analysis of outcome

	Engel Class I	Major complications
MRgLITT	57%	3.8%
Radiofrequency ablation	44%	3.47%
ATL	69%	10.9%
sAHE	66%	7.4%

"Cognitive outcome might be more favorable after MRgLITT compared to ATL and sAHE"

Kohlhase K. Epilepsia 2020

Stereotactic radiosurgery (SRS)

Radiosurgery for MTLE-HS

- 18,20,25 Gy to 50% isodose
- European multicenter study 62% seizure free (Regis 2004)
- 9/15 (60%) seizure free (24 Gy) at 8-year follow-up (Bartolomei 2008)
- US pilot study 77% seizure free

Acta Neurol Scand 2016: 134: 442-451 DOI: 10.1111/ane.12562

© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd ACTA NEUROLOGICA SCANDINAVICA

Stereotactic radiosurgery for the treatment of mesial temporal lobe epilepsy

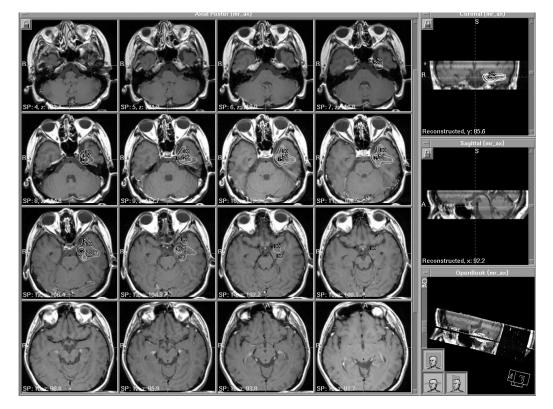
Feng E-S, Sui C-B, Wang T-X, Sun G-L. Stereotactic radiosurgery for the treatment of mesial temporal lobe epilepsy. Acta Neurol Scand 2016: 134: 442–451. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

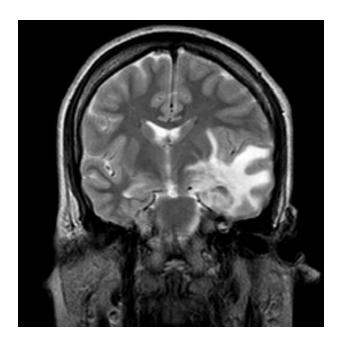
Objectives – Stereotactic radiosurgery (RS) is a potential option for some patients with temporal lobe epilepsy (TLE). The aim of this meta-analysis was to determine the pooled seizure-free rate and the

E.-S. Feng¹, C.-B. Sui², T.-X. Wang³, G.-L. Sun³

¹Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China; ²Department of Neurology, Beihai Hospital, Yantai, Shandong, China; ³Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong, China

- 50.9% seizure free (6 months-9 years)
- 14 months to seizure cessation


CLINICAL STUDIES


FAILURE OF GAMMA KNIFE RADIOSURGERY FOR MESIAL TEMPORAL LOBE EPILEPSY: REPORT OF FIVE CASES

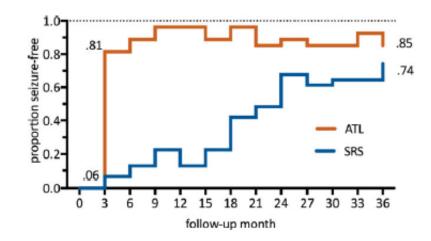
Srikijvilaikul, Teeradej M.D.; Najm, Imad M.D.; Foldvary-Schaefer, Nancy D.O.; Lineweaver, Tara Ph.D.; Suh, John H. M.D.; Bingaman, William E. M.D.

Author Information \otimes

Neurosurgery 54(6):p 1395-1404, June 2004. | *DOI*: 10.1227/01.NEU.0000124604.29767.EB

DOI: 10.1111/epi.14045

FULL-LENGTH ORIGINAL RESEARCH


Epilepsia

Radiosurgery versus open surgery for mesial temporal lobe epilepsy: The randomized, controlled ROSE trial

Nicholas M. Barbaro¹ + Mark Quigg² + Mariann M. Ward³ + Edward F. Chang³ + Donna K. Broshek⁴ + John T. Langfitt⁵ + Guofen Yan⁶ + Kenneth D. Laxer⁷ + Andrew J. Cole⁸ + Penny K. Sneed⁹ + Christopher P. Hess¹⁰ + Wei Yu⁶ + Manjari Tripathi¹¹ + Christianne N. Heck¹² + John W. Miller¹³ + Paul A. Garcia¹⁴ + Andrew McEvoy¹⁵ + Nathan B. Fountain² + Vincenta Salanova¹⁶ + Robert C. Knowlton¹⁴ + Anto Bagić¹⁷ + Thomas Henry¹⁸ + Siddharth Kapoor¹⁹ + Guy McKhann²⁰ + Adriana E. Palade²¹ + Markus Reuber²² + Evelyn Tecoma²³ Published in final edited form as: *Epilepsia*. 2011 May ; 52(5): 909–916. doi:10.1111/j.1528-1167.2011.02987.x.

Neuropsychological outcomes after Gamma Knife radiosurgery for mesial temporal lobe epilepsy: a prospective multicenter study

Mark Quigg, MD MSc¹, Donna K. Broshek, PhD², Nicholas M. Barbaro, MD^{3,4}, Mariann M. Ward, NP MS³, Kenneth D. Laxer, MD⁵, Guofen Yan, PhD⁶, Kathleen Lamborn, PhD³, and the Radiosurgery Epilepsy Study Group

- 31 SRS, 27 ATL
- 16 (52%) SRS, 21 (78%) ATL seziure free
- Verbal memory chnages were not different
- QOL associated with seizure remission
- SRS, ATL appear to have effectiveness and reasonable safety as treatment for MTLE
- SRS is an alternative to ATL in patients with contraindication for or with reluctance to undergo open surgery

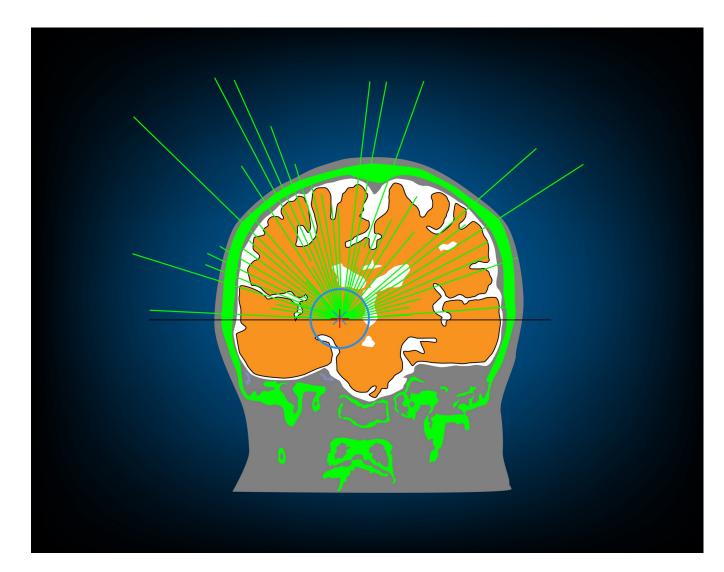
REVIEW

Ryan Wang, BSc 🔋 Usman Beg, BSc[‡] Varun Padmanaban, MD 🔋 Taylor J. Abel, MD[¶]|| Nir Lipsman, MD, PhD[#]** George M. Ibrahim, MD, PhD^{#‡55} Alireza Mansouri, MD, MSc, FRCSC 🕫 ⁵¹¹

Strandar, of Mandrata, University,

ultrasound for mTLE.

A Systematic Review of Minimally Invasive Procedures for Mesial Temporal Lobe Epilepsy: Too Minimal, Too Fast?


BACKGROUND: Cortico-amygdalohippocampectomy (CAH) is effective for mesial temporal lobe epilepsy (mTLE). Concerns regarding surgical morbidity have generated enthusiasm for more minimally invasive interventions. A careful analysis of current data is warranted before widespread adoption of these techniques. **OBJECTIVE:** To systematically review the use of laser interstitial thermal therapy (LITT), stereotactic radiosurgery (SRS), radiofrequency thermocoagulation (RF-TC), and focused

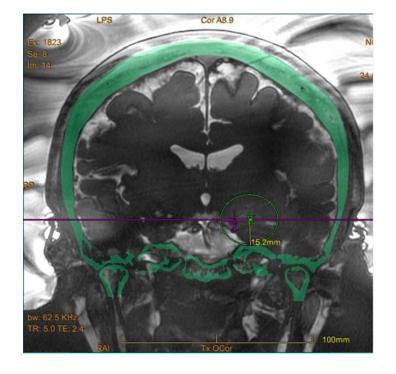
METHODS: Major online databases were seenabled for an excision above the second in the

- LITT has compelling evidence of efficacy
- SRS has a latency period and inferior to CAH
- RF-TC is a less resource-intensive alternative to LITT

Stereotactic ablation techniques					
Technique	Pros	Cons			
Radiofrequency	Reduced collateral damage Immediate benefit Low cost	Temperature monitored only at tip			
Radiosurgery	Noninvasive	Delayed benefit, risk of SUDEP Potential radiation injury, dose limitations High cost			
LITT	Minimal collateral damage Immediate benefit Near real-time magnetic resonance thermography guides therapy and confirms ablation zone	High cost/ disposables			

Transcranial Focused Ultrasound

CASE REPORT

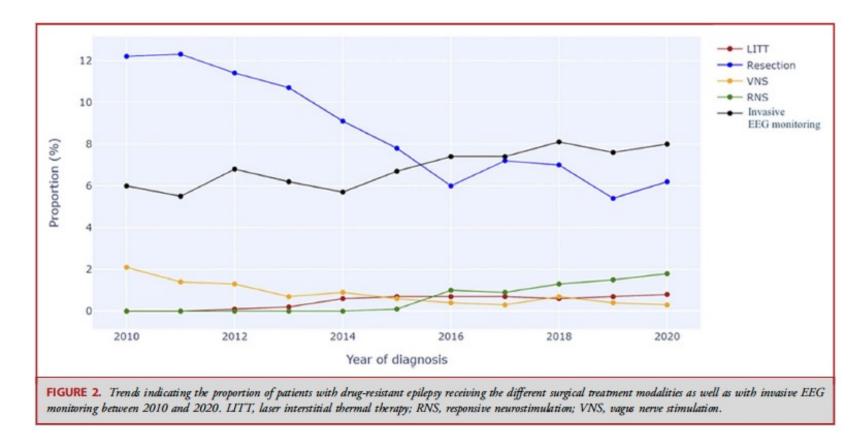

Magnetic resonance-guided focused ultrasound for mesial temporal lobe epilepsy: a case report

Keiichi Abe^{1*}, Toshio Yamaguchi², Hiroki Hori³, Masatake Sumi¹, Shiro Horisawa¹, Takaomi Taira¹ and Tomokatsu Hori⁴

- 36-year-old woman with left MTLE
- Sub-ablations temperatures (48 C)
- Post-op MRI: no lesion
- Post-op PET: Increased metabolism left lateral temporal, bilateral striata, bilateral frontal base, posterior cingulate
- Seizure outcome: Engel III

Check fo updates

Open Access



BMC Neurology

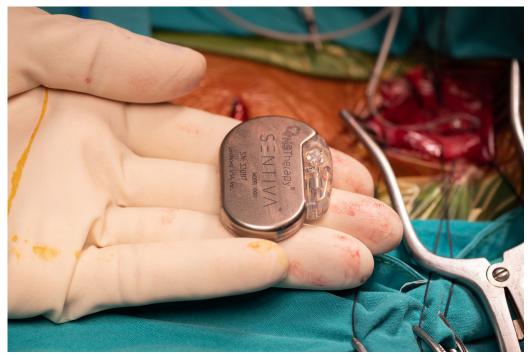
	Advantage	Disadvantage
ATL	Class I evidence, best seizure outcomes	Largest incision, questionable neuropsychological implications of lateral cortex resection
SelAH Transylvian approach Transcortical approach Subtemporal approach	Preservation of lateral cortex Complete preservation of lateral cortex Technically less chanllenging Avoid both sylvian fissure and lateral cortex	Slight worse seizure outcomes than ATL; still requires open surgery Technicallly challenging, damage to temporal stem Damage to lateral cortex Possible retraction damage to basal temporal lobe
Gamma knife radiosurgery	No invasive surgery	Antiseizure effects delayed by 12-24 months
Stereotactic laser thermo-ablation Stereotactic radiofrequency thermocoagulation	Only burr hole required, preliminarily favorable neuropsychological outcomes	Higher risk of persistent seizures than resection; long-term outcomes require further study
Device implantation Responsive neurostimulation Vagus nerve stimulation Deep brain stimulation	No brain resection Direct closed-loop therapy to EZ EZ localization not required EZ localization not required	Palliative; worsen seizure freedom than resection/ablasion EZ locaization required; seizure freedom is rare Seizure freedom is rare Seizure freedom is rare

Trends in the Utilization of Surgical Modalities for the Treatment of Drug-Resistant Epilepsy: A Comprehensive 10-Year Analysis Using the National Inpatient Sample

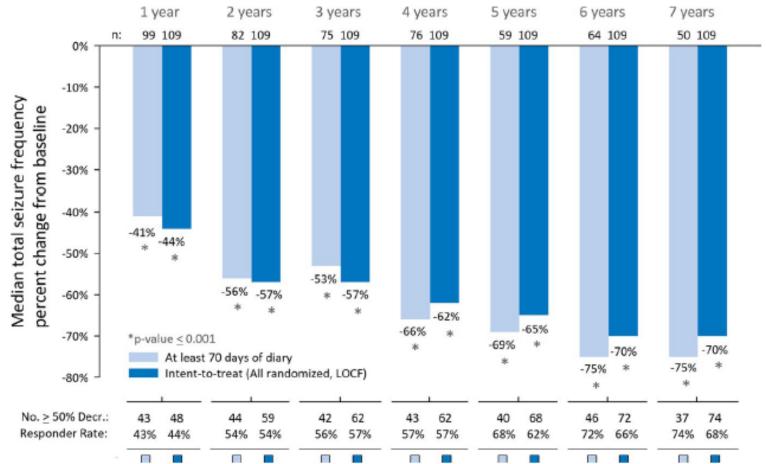
Abdul Karim Ghaith, MD [©] ^{49*}, Victor Gabriel El-Hajj, BS [©] ⁴⁵[^{4*}, Jesus E. Sanchez-Garavito, MD¹, Cameron Zamanian, BS⁴⁵, Marc Ghanem, MD⁴⁵, Antonio Bon-Nieves, BS⁴⁵, Baibing Chen, MD, MPH^{***}, Cornelia N. Drees, MD⁴⁺, David Miller, MD⁵⁵, Jonathon J. Parker, MD, PhD^{|||}, Joao Paulo Almeida, MD¹, Adrian Elmi-Terander, MD, PhD ^{© ||}, William Tatum, DO⁴, Erik H. Middlebrooks, MD⁵⁵, Mohamad Bydon, MD ^{© +5}, Jamie J. Van-Gompel, MD ^{© 5}, Brian N. Lundstrom, MD, PhD ^{© 11}, Sanjeet S. Grewal, MD ^{© 1}

Neurosurgery 2024


Variable	LITT (N = 205)	Resection (N = 2602)	RNS (N = 262)	VNS (N = 274)	Total (N = 3343)	P value
lschemic stroke	0 (0.0%)	34 (1.3%)	0 (0.0%)	1 (0.4%)	35 (1.0%)	.049
Postoperative SAH	0 (0.0%)	12 (0.5%)	0 (0.0%)	0 (0.0%)	12 (0.4%)	.330
Neurological complications	0 (0.0%)	89 (3.4%)	1 (0.4%)	1 (0.4%)	91 (2.7%)	<.001
Pulmonary complications	1 (0.5%)	36 (1.4%)	0 (0.0%)	4 (1.5%)	41 (1.2%)	.185
DVT/PE complications	1 (0.5%)	16 (0.6%)	1 (0.4%)	1 (0.4%)	19 (0.6%)	.922
Cardiac complications	1 (0.5%)	6 (0.2%)	0 (0.0%)	0 (0.0%)	7 (0.2%)	.585
Urinary complications	0 (0.0%)	17 (0.7%)	2 (0.8%)	2 (0.7%)	21 (0.6%)	.695
Hematoma	5 (2.4%)	26 (1.0%)	8 (3.1%)	0 (0.0%)	39 (1.2%)	.002
Wound dehiscence	0 (0.0%)	8 (0.3%)	1 (0.4%)	1 (0.4%)	10 (0.3%)	.868
Wound infection	0 (0.0%)	8 (0.3%)	0 (0.0%)	0 (0.0%)	8 (0.2%)	.516
Mean LOS in days (95% CI)	2.5 (2.1-2.9)	7.8 (7.7-8.1)	3.3 (2.9-4.3)	_	6.9 (6.6-7.2)	<.001
Nonhome discharge	9 (4.4%)	459 (17.6%)	25 (9.5%)	32 (11.7%)	525 (15.7%)	<.001
Death	0 (0.0%)	10 (0.4%)	0 (0.0%)	1 (0.4%)	11 (0.3%)	.616
Mean total charges in USD (95% CI)	140 604 (129 000-152 000)	180 093 (173 800-186 200)	272 968 (250 000-296 000)	167 688 (122 000-214 00)	183 892 (178 000-191 000)	<.001

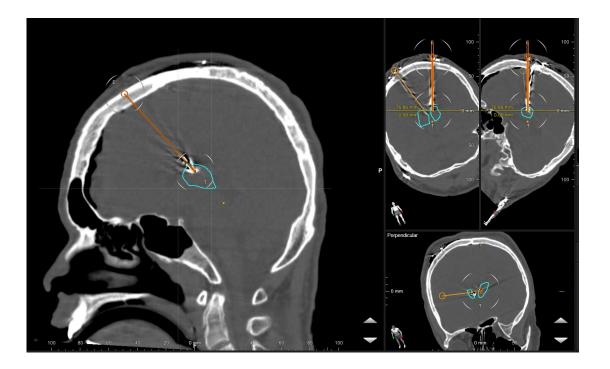

DVT/PE, deep vein thrombosis/pulmonary embolism; LITT, laser interstitial thermal therapy; LOS, length of stay; RNS, responsive neurostimulation; SAH, subarachnoid hemorrhage; VNS, vagus nerve stimulation. Bold entries indicate P < 0.05.

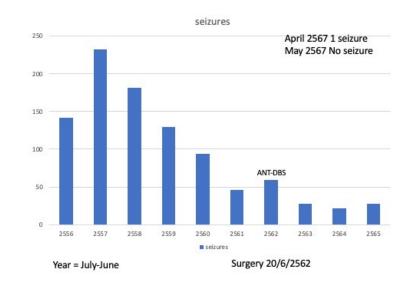
Neurostimulation


- Bitemporal lobe epilepsy
- Failed temporal lobectomy
- Cognitive concern of resection

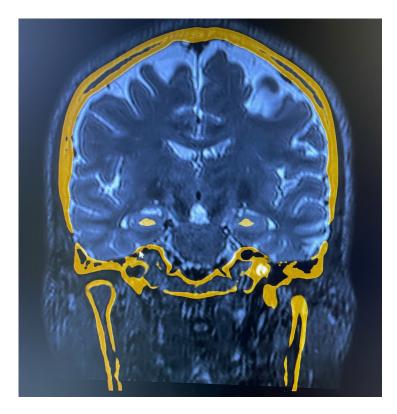
VNS

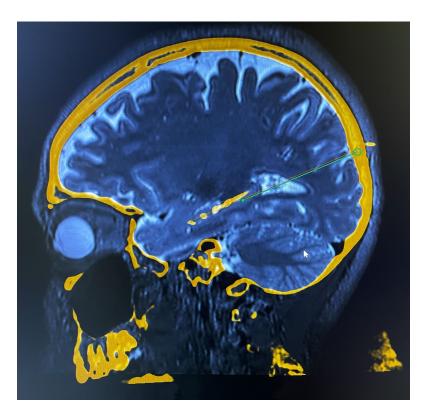
Anterior thalamic DBS




75% median seizure reduction 18% seizure freedom >6 months

ANT-DBS (SANTE study)


Salanova V, et al. Epilepsia 2021


Anterior thalamic DBS

Hippocampal DBS

Conclusions

- Surgical treatment of MTLE-HS is safe and effective.
- ATL or SeIAH are the standard treatment.
- Minimally invasive surgery is an option in selected patients.

Thank you