

AI Fundamentals and Breakthrough Applications in Epilepsy

Kanokwan Boonyapisit, MD.

Department of Medicine

Siriraj Hospital

Artificial intelligence (AI)

- "A Field of computer science focused on creating systems to perform tasks that typically require human intelligence, such as visual perception, speech recognition, decision-making and language translation"
- "A field of research in computer science that develops and studies methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals"

Charles Babbage 1791 –1871

Invented the first <u>mechanical computer</u>, the <u>Difference Engine</u>, that eventually led to more complex electronic designs

Alan Turing (23 June 1912 – 7 June 1954)

Military Model Enigma I, in use from 1930

The <u>ENIAC, or Electronic Numerical Integrator and Computer</u>, was the result of a U.S. government-funded project during World War II to build an electronic computer that could be programmed. The project was based out of the University of Pennsylvania's Moore School of Engineering. The design team included engineer J. Presper Eckert Jr. and physicist John Mauchly under the leadership of Herman Goldstine. The team began work on the project in 1943. John von Neumann, a noted mathematician of the day, began consulting on the project in 1944.

Example of AI

Use "large language model"

Games eg. computer chess

Terms

Machine Learning

- A subset of artificial intelligence that involves development of algorithms and statistical models that enable computers to improve their performance on a specific task through experience or data without being explicitly programmed for that task
- Involves using data to train a computer algorithm to maximize its performance based on a single quantitative metric (e.g., accuracy)

Artificial intelligence

- A Field of computer science focused on creating systems to perform tasks that typically require human intelligence
- Aims to perform a broad range of tasks, including tasks for which there has not been explicit training, and can do so using multiple ML tools

Deep learning

 A machine learning technique that uses layered neural networks to analyse and interpret vast amounts of data

Data pipeline

FEATURE SELECTION

Input Data identified

- manually
- based on expert level knowledge
- by algorithm

Overview of machine learning concepts

- Supervised learning
- Unsupervised learning

Α

Supervised learning

Eg. Annotated EEG recordings may be used to train an algorithm to automatically detect epileptiform discharges.

The algorithm learns by analysing these data and making predictions or decisions that are refined according to accuracy against the known labels Unsupervised learning An algorithm is trained with an unlabelled dataset, allowing autonomous identification of patterns and structures in the data. Can uncover patterns and intrinsic structures.

Cluster 3

Eg. algorithm identify candidate epileptiform discharges by
 detecting outliers from the background EEG recording

without guidance

Overview of machine learning concepts

- Commonly used mapping functions
 - Random forest
 - K nearest neighbor (k-NN) classification
 - Support vector machine

The random forest

Algorithm generates a forest of decision trees, each utilizing subsets of input features as bifurcation points to differentiate the training data into expected outputs the output of the ensemble (eg, the majority vote) is reported for new inputs.

k-nearest neighbor classification

an input is plotted as a vector within a feature space alongside labeled data, and is subsequently assigned to the class of its k nearest neighbors (here, k = 4).

Support vector machine

generate a hyperplane in a higher-dimensional feature space to maximally separate clusters of labeled training data, providing a decision boundary for classifying new inputs

In cross-validation

a subset of the training data is withheld as the validation set (yellow), allowing for fine-tuning of an algorithm parametrized on the training set (light green); after multiple iterations (here showing K-fold cross-validation with K = 5), the algorithm may be tested on an initially withheld testing set (dark green) to assess accuracy and generalizability of the finalized model

Multilayers artificial neural networks

process data through layers of nodes, in each of which weighted inputs are summated and passed through a nonlinear activation function to yield intermediary outputs; these may in turn proceed through additional layers of nodes as desired, ultimately reaching output nodes

See video "Stat Quest" on YOUTUBE

Multilayers artificial neural networks

process data through layers of nodes, in each of which weighted inputs are summated and passed through a nonlinear activation function to yield intermediary outputs; these may in turn proceed through additional layers of nodes as desired, ultimately reaching output nodes

Data modalities of AI in epilepsy

Responsive neurostimulation

Received: 24 June 2023 Accepted: 29 July 2023

DOI: 10.1002/epi4.12800

ORIGINAL ARTICLE

Epilepsy classification using artificial intelligence: A web-based application

Ali A. Asadi-Pooya^{1,2} | Davood Fattahi¹ | Nahid Abolpour¹ | Reza Boostani³ Mohsen Farazdaghi¹ | Mehrdad Sharifi^{4,5,6}

To evaluate the feasibility of using easily accessible and applicable clinical information (based on history taking and physical examination) in order to make a reliable differentiation between idiopathic generalized epilepsy (IGE) versus focal epilepsy using machine learning (ML) methods.

Epilepsia Open. 2023;8:1362–1368

Data pipeline

INPUT DATA

FEATURE SELECTION Input Data

identified

- manually
- based on expert level knowledge
- by algorithm

Analyze using **MAPPING FUNCTION** that generate output prediction

OUTPUT PREDICTION

All patients with an electro-clinical diagnosis of IGE or focal epilepsy, at the outpatient epilepsy clinic at Shiraz University, Shiraz, Iran, from 2008 until 2022, were included

1445 patients; 964 with focal epilepsy and 481 with IGE

The first author selected a set of clinical features

Different types of classifiers were assessed and the final classification was made based on their best results using the stacking method

First phase of the study was a retrospective study of a prospectively developed and maintained database.

Epilepsia Open. 2023;8:1362–1368

Feature Selection

The first author selected a set of clinical features that are

(1) easily obtainable even by people who are not experts in the field and

(2) helpful in making a diagnosis of epilepsy type/syndrome (differentiating focal epilepsy from IGE) based on the previous literature.

Other clinical features [eg, an exact diagnosis of seizure types (eg, focal seizure with impaired awareness vs absence seizures)] that are very helpful in differentiating focal epilepsy from IGE, but need a skillful expert were not included

The study did not include EEG and imaging findings.

Epilepsy Classifier: IGE vs Focal

Age at onset: (years, e.g. 12, 13, etc.)

Sex: (1 for Male, 2 for Female)

Febrile convulsion: (1 for Yes, 2 for No)

Family history of epilepsy: (1 for Yes, 2 for No)

Major head injury: (1 for Yes, 2 for No)

Medical comorbidity: (1 for Yes, 2 for No)

Aura: (an integer from 1 to 17, see | HERE |)

Exam: (1 for Normal, 2 for Abnormal)

Tongue biting: (1 for Yes, 2 for No)

Classify

Description:

Project details: The present online application aims to utilize clinical information of patients with epilepsy (PWE) to differentiate focal epilepsy from idiopathic generalized epilepsy (IGE) by application of machine learning methods. Nine easily obtainable clinical features (based on a detailed history and physical examination) are utilised as the inputs. The classification framework benefits from multiple classifiers and their best results are exploited by a Stacking classifier to perform the final classification. The training procedure is carried out on a large database of PWE built over 14 years at the epilepsy center at Shiraz University of Medical Sciences, Iran, from 2008 until 2022. More technical details can be found in the related publication.

Input parameters: including age at seizure onset, sex, a history of febrile convulsion, a family history of epilepsy, a history of severe head injury, a history of medical comorbidity, aura with seizures, ictal-related tongue biting, and abnormal physical examination.

Aura types: 1 = No aura, 2 = Indescribable feeling, 3 = Dizziness, 4 = Fear / Nervousness / Anxiety / Adrenaline rush, 5 = Cognitive / Deja vu / Jamais vu / Forced thinking, 6 = Epigastric / Abdominal / Nausea, 7 = Elementary visual, 8 = Complex visual, 9 = Elementary auditory, 10 = Complex auditory, 11 = Olfactory, 12 =

post

Aura types: 1 = No aura, 2 = Indescribable feeling, 3 = Dizziness, 4 = Fear / Nervousness / Anxiety / Adrenaline rush, 5 = Cognitive / Deja vu / Jamais vu / Forced thinking, 6 = Epigastric / Abdominal / Nausea, 7 = Elementary visual, 8 = Complex visual, 9 = Elementary auditory, 10 = Complex auditory, 11 = Olfactory, 12 = Gustatory / Taste, 13 = Left focal sensory, 14 = Right focal sensory, 15 = Other sensory, 16 = Headache, 17 = Other.

> Epilepsia Open. 2023;8:1362–1368 http://www.epiclass.ir/f-ige.

	Precision			Sensit	Sensitivity			Specificity			F1-score		
Classifiers	FE	IGE	Avg	FE	IGE	Avg	FE	IGE	Avg	FE	IGE	Avg	
Stack	0.87	0.71	0.81	0.85	0.74	0.81	0.74	0.85	0.77	0.86	0.72	0.81	
SVM	0.83	0.68	0.78	0.85	0.66	0.79	0.66	0.85	0.72	0.84	0.67	0.78	
LogReg	0.83	0.67	0.78	0.84	0.66	0.78	0.66	0.84	0.72	0.84	0.67	0.78	
KNN	0.87	0.66	0.80	0.76	0.80	0.78	0.76	0.80	0.78	0.84	0.71	0.79	
RanFor	0.85	0.69	0.80	0.84	0.70	0.79	0.70	0.84	0.77	0.85	0.69	0.80	
GradBoost	0.88	0.68	Also, in c	order to e	enable ar	nd facilita	ite future	externa	l validatio	on studie	es by oth	er peers	
AdaBoost	0.87	0.69	and profe	and professionals, the developed and trained ML model was implemented									
Bagging	0.86	0.68	and published via an online web-based application that is freely available at http://www.epiclass.ir/f-ige.										
ExtRa Trees	0.82	0.71	0.78	0.89	0.60	0.79	0.60	0.89	0.70	0.85	0.66	0.79	

Note: Each row represents a classifier while their precision, sensitivity, specificity, and F1-score are in the columns for focal epilepsy (FE), idiopathic generalized epilepsy (IGE), and their average.

This study developed a pragmatic algorithm aimed at epilepsy classification (IGE vs focal epilepsy) for individuals whose epilepsy begins at age 10 years and older The algorithm has the precision: 0.81, sensitivity: 0.81, and specificity: 0.77. This algorithm is that it could be used by people who are not experts in epilepsy diagnosis (eg, internists, etc.)

Epilepsia Open. 2023;8:1362–1368

Data modalities of AI in epilepsy

Responsive neurostimulation

Received: 30 July 2022 Accepted: 30 September 2022
DOI: 10.1111/ane.13716
REVIEW ARTICLE
WILEY

Seizure detection based on wearable devices: A review of device, mechanism, and algorithm

Wen Li¹ | Guangming Wang¹ | Xiyuan Lei¹ | Duozheng Sheng¹ | Tao Yu² | Gang Wang¹

Li W, et al. Acta Neurol Scand. 2022;146:723-731

0

Data pipeline

FEATURE SI Input Data identified - manually

- based on e
- by algorith

ACM: acceralometer sEMG EKG EDA: electrodermal activity PPG: photoplethysmography EEG: behind ears

Input data selected based on different criteria : Time Frequency

Different types of classifiers KNN SVM RF gradient tree boosting

Epilepsia Open. 2019;4:309-317

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	First author	Subjects (n)	Seizures	Signal	Feature set	Algorithm		SEN (%)	FDR (/h)	
$ \begin{array}{ c c c c c } \hline Dong^{57} & 5 & 379 GTCS & ACM & Time, frequency & RF & 88.01 & 0.01 \\ \hline Dong^{58} & 7 & 547 MS & ACM & Time, frequency & two-layersemble model & 76.84 & 0.04 \\ \hline Conradsen^{33} & 11 & 22 GTCS & sEMG & Time & threshold & 0.04 \\ \hline Benicxty^{27} & 11 & 32 GTCS & sEMG & Time & threshold & 78.80 & 0.03 \\ \hline Baumgartner^{59} & 20 & 47 MS & sEMG & Frequency, time-frequency & threshold & 72 & 7 \\ \hline You^{40} & 12 & 56 MS & behind-the-ear EEG & Time, frequency, time-frequency & GAN, threshold & 94.80 & 0.14 \\ \hline Frankel^{25} & 10 & 24 FS & behind-the-ear EEG & frequency, time-frequency, molinear \\ \hline You^{40} & 16 & 52 MS & behind-the-ear EEG & frequency, nonlinear \\ \hline Froncoghifar^{45} & 18 & 154 FS & ECG, PFG & Time, frequency, nonlinear \\ \hline Forooghifar^{45} & 18 & 154 FS & ECG & Time, frequency, nonlinear \\ \hline Froncoghifar^{45} & 18 & 154 FS & ECG & Time, frequency, nonlinear \\ \hline Pohi^{18} & 7 & 16 GTCS & ACM, EDA & Time, frequency, nonlinear \\ \hline Frequency, nonlinear \\ \hline Froncoghifar^{45} & 7 & 22 GTCS & ACM, EDA & Time, frequency, nonlinear \\ \hline Pohi^{18} & 7 & 16 GTCS & ACM, EDA & Time, frequency, nonlinear \\ \hline Frequency, nonlinear \\ \hline Frequency, nonlinear \\ \hline Frequency, frequency, nonlinear \\ \hline Frequency, frequency, nonlinear \\ \hline Pohi^{18} & 7 & 16 GTCS & ACM, EDA & Time, frequency, nonlinear \\ \hline Frequency, nonlinear \\ \hline Frequency, frequency, nonlinear \\ \hline Frequency,$	Johansson ⁵⁶	11	37 TCS	ACM	Time, frequency	KNN		100	0.05	
$\begin{array}{ c c c c c } \hline Pong^{\$8} & 7 & 547 MS & ACM & Time, frequency two-layer \rightarrow semble model 76.84 0.04 \\ \hline Conradsen^{33} & 11 & 22 GTCS & 5EMG & Time & threshold & 93.80 0.03 \\ \hline Conradsen^{33} & 11 & 32 GTCS & 5EMG & Time & threshold & 76.9 0.03 \\ \hline Baingartner^{59} & 20 & 47 MS & 5EMG & Frequency, time-frequency threshold & 94.00 0.04 \\ \hline You60 & 12 & 56 MS & behind-the-arEG & Time, frequency, time-frequency & freshold & 0.04 \\ \hline Frankel^{25} & 10 & 24 FS & behind-the-arEG & Time, frequency, time-frequency & RF & 90.00 0.09 \\ \hline You^{61} & 16 & 52 MS & behind-the-arEG & Time, frequency, time-frequency & NAE based \rightarrow NN & 90.40 0.83 \\ \hline Vandecasteele^{64} & 11 & 47 FS & ECG, PFG & Time & SVM & 70 & 211 \\ \hline Foroghifar^{63} & 18 & 154 FS & ECG & Time, frequency, nonlinear \\ \hline You^{61} & 22 & 227 FS & ECG & Time, frequency, nonlinear \\ \hline Frankel^{52} & 10 & 24 FS & ECG, PFG & Time & SVM & SEMS & S$	Dong ⁵⁷	5	379 GTCS	ACM	Time, frequency	RF		88.01	0.01	
$ \begin{array}{c c c c c c } \hline Conradsen^{33} & 11 & 22 \ GTCS & sEMG & Time & threshold & threshold & 0.04 \\ \hline Beniczky^{23} & 11 & 32 \ GTCS & sEMG & Time & Time & threshold & Timeshold & 0.03 \\ \hline Baumgartner^{59} & 20 & 47 \ MS & sEMG & Frequency, time-frequency & threshold & 72 & 72 & 7 \\ \hline You^{40} & 12 & 56 \ MS & behind-the-ear EEG & Time-frequency & GAN, threshold & 0.03 \\ \hline Frankel^{23} & 10 & 24 \ FS & behind-the-ear EEG & Time, frequency, time-frequency & PA & 0.03 \\ \hline You^{41} & 16 & 52 \ MS & behind-the-ear EEG & frequency, nonlinear & RF & $$VM & 70 & 2.11 \\ \hline Forooghifar^{55} & 18 & 154 \ FS & ECG & Time, frequency, nonlinear & RF & $$Sensitivity \ JCT \ Cooman^{46} & 24 & 227 \ FS & ECG & Time, frequency, nonlinear & SVM & $$DR \ JCT \ FTCb & $$PON \ TTTT \ TTTT \ Poh^{18} & 7 & 16 \ GTS & ACM, EDA & Time, frequency, nonlinear & $$VM \ Midsevic^{69} & 7 & 22 \ S5 \ MS & ACM, EDA & Time, frequency, nonlinear & $$VM \ Midsevic^{69} & 10 & 217C & ACM, EDA & Time, frequency, nonlinear & $$VM \ MI \ Starsen^{16} & $$20 \ Starsen \ Starsen \ SVM \ Starse$	Dong ⁵⁸	7	547 MS	ACM	Time, frequency	two-layer ei	nsemble model	76.84	0.04	
Beniczky231132 GTCSsEMGTimethreshold $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Conradsen ³³	11	22 GTCS	sEMG	Time	threshold		100	0.04	
Baumgartners2047 MSsEMGFrequency, time-frequencythreshold7277You ⁶⁰ 1256 MSbehind-the-ear EEGTime-frequencyGAN, threshold96.300.14Frankel ²⁵ 1024 FSbehind-the-ear EEGTime, frequency, time-frequency, nonlinearRF900.09You ⁶¹ 1652 MSbehind-the-ear EEGfrequency, nonlinearRF900.03Vandecasteele ⁶⁴ 1147 FSECG, PPGTime, frequency, nonlinearRFSensitivity of 727Forooghifar ⁶⁵ 18154 FSECGTime, frequency, nonlinearRFSensitivity of 727100%Gooman ⁶⁶ 24227 FSECGTime, frequency, nonlinearSVMFDR of 0.01+2.11/hrFDR of 0.01+2.11/hrBaghersalimi ⁶⁷ 29277 FS, FCCECGTime, frequency, nonlinearSVM940.03Milošević ⁶⁸ 716 GTCSACM, EDATime, frequency, nonlinearSVM910.04Milošević ⁶⁸ 722 GTCSACM, EDATime, frequency, nonlinearSVM910.04Vandecasteele ⁶⁴ 1021 TCSACM, EDATime, frequency, nonlinearSVM910.04Milošević ⁶⁸ 722 GTCSACM, EDATime, frequency, nonlinearSVM910.04Vandecasteele ⁶⁴ 1021 TCSACM, EDATime, frequency, nonlinearSVM910.01Nasseri ⁶² 1021 TCS <td< td=""><td>Beniczky²³</td><td>11</td><td>32 GTCS</td><td>sEMG</td><td>Time</td><td>threshold</td><td></td><td>93.80</td><td>0.03</td><td></td></td<>	Beniczky ²³	11	32 GTCS	sEMG	Time	threshold		93.80	0.03	
You ⁶⁰ 1256 MSbehind-the-ear EEGTime-frequencyGAN, thres/I96.300.14Frankel ²⁵ 1024 FSbehind-the-ear EEGTime, frequency, nonlinear frequency, nonlinearRF900.09You ⁶¹ 1652 MSbehind-the-ear EEGfrequencyTimeSVM70211Forooghifar ⁴⁵ 18154 FSECGTime, frequency, nonlinearRFSensitivitySensitivityTUDO%Gooman ⁶⁶ 24227 FSECGTimeSVMReSensitivityTUDO%Baghersalini ⁶⁷ 29277 FSECGTime, frequency, nonlinearSVM94.000.03Milošević ⁶⁸ 716 GTCSACM, EDATime, frequency, nonlinearSVM94.000.03Milošević ⁶⁸ 722 GTCSACM, EDATime, frequency, nonlinearSVM94.000.03Onorati ¹⁹ 22S5 MSACM, EDATime, frequency, nonlinearSVM94.000.04Vandecasteele ⁶³ 135896 FSbehind-the-ear EEG, ECGTime, frequency, nonlinearSVM94.550.01Vandecasteele ⁶⁴ 1021 TCSACM, EDATime, frequency, nonlinearSVM94.550.01Name880 Hild1021 TCSACM, EDATime, frequencyGradient troosting910.01Bitcher ⁶⁹ 1021 TCSACM, EDATime, frequencyGradient troosting910.01Bitcher ⁶⁹ 920 MS	Baumgartner ⁵⁹	20	47 MS	sEMG	Frequency, time-frequency	threshold		72	/	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	You ⁶⁰	12	56 MS	behind-the-ear EEG	Time-frequency	GAN, thresh	nold	96.30	0.14	
You1652 MSbehind-the-ear EEGfrequencyVAE basedRNN90.400.83Vandecasteele1147 FSECG, PPGTimeSVM70211Forooghifar18154 FSECGTime, frequency, nonlinearRFSensitivity $f = 2 + 100\%$ Cooman24227 FSECGTimeSVMRes1DCNN $f = 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	Frankel ²⁵	10	24 FS	behind-the-ear EEG	Time, frequency, time– frequency, nonlinear	RF		90	0.09	
Vandecasteele ⁶⁴ 1147 FSECG, PPGTimeSVM70211Forooghifar 6018154 FSECGTime, frequency, nonlinearRFSensitivity of 72-100% FDR of 0.1-2.11/hrCooman 6424227 FSECGTimeSVMFDR of 0.1-2.11/hrBaghersalimi 6729277 FS, FTCbECGTime, frequency, nonlinearSVMFDR of 0.03Poh 18716 GTCSACM, EDATime, frequency, nonlinearSVM940.03Milošević 	You ⁶¹	16	52 MS	behind-the-ear EEG	frequency	VAE based of	on RNN	90.40	0.83	
Forooghifar 618154 FSECGTime, frequency, nonlinearRFSensitivity of 72-100% FDR of 0.01-2.11/hrCooman 624227 FSECGTimeSVMFDR of 0.01-2.11/hrBaghersalimi 6729277 FS, FTCbECGTime, frequency, nonlinearSVMP40.03Poh18716 GTCSACM, EDATime, frequency, nonlinearSVM940.03Milošević 68722 GTCSACM, EDATime, frequency, nonlinearSVM940.03Onorati ¹⁹ 2255 MSACM, EDATime, frequency, nonlinearSVM94.550.01Vandecasteele 63135896 FSbehind-the-ear EEG, ECGTime, frequency, nonlinearRF921.85Böttcher 621021 TCSACM, EDATime, frequencyGradient tre boosting910.01Nasseri 621019 MSACM, EDA, PPG, temperatureTime, frequencyGradient tre boosting930.10Böttcher 70920 MSACM, EDA, PPGTime, frequencyGradient tre boosting750.56	Vandecasteele ⁶⁴	11	47 FS	ECG, PPG	Time	SVM		70	2 11	
Coomanéé24227 FSECGTimeSVM Res1DCNNFDR of 0.01-2.11/hrBaghersalimié729277 FS, FTCbECGTimeRes1DCNNFDR of 0.01-2.11/hrPoh18716 GTCSACM, EDATime, frequency, nonlinearSVM940.03Milošević ⁶⁸ 722 GTCSACM, EDATime, frequency, time- frequency, nonlinearSVM910.04Onorati ¹⁹ 2255 MSACM, EDATime, frequency, nonlinearSVM94.550.01Vandecasteele ⁶³ 135896 FSbehind-the-ear EEG, ECGTime, frequency, nonlinearRF921.85Böttcher ⁶⁹ 1021 TCSACM, EDATime, frequencyGradient tree boosting910.01Nasseri ⁶² 1019 MSACM, EDA, PPG, temperatureTime, frequencyGradient tree boosting930.10Böttcher ⁷⁰ 920 MSACM, EDA, PPGTime, frequencyGradient tree boosting750.56	Forooghifar ⁶⁵	18	154 FS	ECG	Time, frequency, nonlinear	RF	Sensiti	vitv	of 72	2-100%
Baghersalimi29277 FS, FTCbECGTimeRes1DCNNFDK OF 0.0 F-2. FT/fmPoh18716 GTCSACM, EDATime, frequency, nonlinearSVM940.03Milošević ⁶⁸ 722 GTCSACM, SEMGTime, frequency, time- frequency, nonlinearSVM910.04Onorati ¹⁹ 2255 MSACM, EDATime, frequency, nonlinearSVM94.550.01Vandecasteele ⁶³ 135896 FSbehind-the-ear EEG, ECGTime, frequency, nonlinearRF921.85Böttcher ⁶⁹ 1021 TCSACM, EDATime, frequencyGradient tree boosting910.01FDR= false discovery rateBöttcher ⁷⁰ 920 MSACM, EDA, PPG, temperatureTime, frequencyGradient tree boosting750.56	Cooman ⁶⁶	24	227 FS	ECG	Time	SVM		f O C		11/br
Poh ¹⁸ 716 GTCSACM, EDATime, frequency, nonlinearSVM940.03Milošević<68	Baghersalimi ⁶⁷	29	277 FS, FTCb	ECG	Time	Res1DCNN		10.0	/1-2.	1 1/111
Milošević 68722 GTCSACM, sEMGTime, frequency, time- frequency, nonlinearSVM910.04Onorati2255 MSACM, EDATime, frequency, nonlinearSVM94.550.01Vandecasteele 63135896 FSbehind-the-ear EEG, 	Poh ¹⁸	7	16 GTCS	ACM, EDA	Time, frequency, nonlinear	SVM		94	0.03	
Onorati ¹⁹ 2255 MSACM, EDATime, frequency, nonlinearSVM94.550.01Vandecasteele ⁶³ 135896 FSbehind-the-ear EEG, ECGTime, frequency, nonlinearRF921.85Böttcher ⁶⁹ 1021 TCSACM, EDATime, frequencyGradient tree boosting910.01Nasseri ⁶² 1019 MSACM, EDA, PPG, temperatureTime, frequencyGradient tree boosting930.10Böttcher ⁷⁰ 920 MSACM, EDA, PPGTime, frequencyGradient tree boosting750.56	Milošević ⁶⁸	7	22 GTCS	ACM, sEMG	Time, frequency, time– frequency, nonlinear	SVM		91	0.04	
Vandecasteele135896 FSbehind-the-ear EEG, ECGTime, frequency, nonlinear RFRF921.85Böttcher1021 TCSACM, EDATime, frequencyGradient tree boosting910.01FDR= false discovery 	Onorati ¹⁹	22	55 MS	ACM, EDA	Time, frequency, nonlinear	SVM		94.55	0.01	
Böttcher1021 TCSACM, EDATime, frequencyGradient tree boosting910.01FDR= falseNasseri1019 MSACM, EDA, PPG, temperatureTimeLSTM930.10discovery rateBöttcher920 MSACM, EDA, PPGTime. frequencyGradient tree boosting750.56	Vandecasteele ⁶³	135	896 FS	behind-the-ear EEG, ECG	Time, frequency, nonlinear	RF		92	1.85	
Nasseri1019 MSACM, EDA, PPG, temperatureTimeLSTM930.10discovery rateBöttcher920 MSACM, EDA, PPGTime. frequencyGradient tree boosting750.56	Böttcher ⁶⁹	10	21 TCS	ACM, EDA	Time, frequency	Gradient tre	ee boosting	91	0.01	FDR= false
Böttcher ⁷⁰ 9 20 MS ACM, EDA, PPG Time. frequency Gradient tree boosting 75 0.56	Nasseri ⁶²	10	19 MS	ACM, EDA, PPG, temperature	Time	LSTM		93	0.10	discovery rate
	Böttcher ⁷⁰	9	20 MS	ACM, EDA, PPG	Time. frequency	Gradient tre	ee boosting	75	0.56	Iale

Abbreviations: FMS, focal motor seizure; FS, focal seizure; FTCb, focal to bi Li W, et al. Acta Neurol Scand. 2022;146:723-731

SPEAC® System Brain Sentinel® Monitoring and Alerting System

Embrace2

: monitor ACM, EDA, PPG and temperature

non-EEG physiological signal-based seizure monitoring system: record sEMG

ACM: acceralometer, EDA: electrodermal activity, PPG: photoplethysmography

TABLE 1 Wearable seizure monitor available in the market

Device	Company	Wear site	Signal	Targeted seizure	Certificate	Battery life
Smart Watch ^{13,14}	SmartMonitor	Wrist/ankle	ACM	CS, FMS	Not reported	30h
Epi-Care ^{16,17}	Danish Care Technology	Wrist	ACM	GTCS	CE	24 h
Embrace2 ²¹	Empatica	Wrist	ACM, EDA, PPG and temperature	GTCS	FDA and CE	48h+
Epilert ²²	Tekru Technologies	Wrist	ACM, EDA, PPG and temperature	TCS	Not reported	48h
EDDI ^{23,33}	IctalCare	Brachial biceps muscles	sEMG	GTCS	CE	8 h
SPEAC ^{23,34}	Brain Sentinel	Biceps and triceps brachii	sEMG	GTCS	FDA	12h
ePatch ²⁴	BioTelemetry	Left ribs	ECG	CS and non-CS with autonomic changes	Not reported	72 h
Epilog ²⁵	Epitel	Scalp below hairline	EEG	Depend on paired software	No FDA	168h
Sensor Dot ²⁶	Byteflies	Behind ear (optional)	EEG	Typical absence	CE	24 h
Nightwatch ^{27,35}	LivAssured BV	Armband	ACM and PPG	CS at night	CE	-
IMEC ^{36,37}	imec/Holst Centre	Armband and patches on chest	ACM, EDA, ECG, and sEMG	FS	Not reported	96h

Abbreviations: CS, convulsive seizure; FMS, focal motor seizure; FS, focal seizure; TCS, tonic-clonic seizure.

Li W, et al. Acta Neurol Scand. 2022;146:723-731

Received: 31 March 2020

Revised: 23 April 2020 Accepted: 27 April 2020

DOI: 10.1111/epi.16541

SUPPLEMENT ARTICLE

Epilepsia

Seizure forecasting and cyclic control of seizures

Rachel E. Stirling¹ | Mark J. Cook² | David B. Grayden¹ | Philippa J. Karoly^{1,2}

Epilepsia. 2021;62(Suppl. 1):S2–S14.

D. Possible user interface designs

Responsive neurostimulation

Multicenter Validation of a Deep Learning Detection Algorithm for Focal Cortical Dysplasia

Ravnoor Singh Gill, PhD-cand, Hyo-Min Lee, PhD-cand, Benoit Caldairou, PhD, Seok-Jun Hong, PhD, Carmen Barba, MD, Francesco Deleo, MD, Ludovico D'Incerti, MD, Vanessa Cristina Mendes Coelho, MD, Matteo Lenge, PhD, Mira Semmelroch, PhD, Dewi Victoria Schrader, MD, Fabrice Bartolomei, MD, Maxime Guye, MD, PhD, Andreas Schulze-Bonhage, MD, Horst Urbach, MD, Kyoo Ho Cho, MD, Fernando Cendes, MD, PhD, Renzo Guerrini, MD, Graeme Jackson, MD, R. Edward Hogan, MD, Neda Bernasconi, MD, PhD,* and Andrea Bernasconi, MD*

Neurology[®] 2021;97:e1571-e1582. doi:10.1212/WNL.00000000012698

Correspondence

Dr. Bernasconi andrea.bernasconi@ mcgill.ca

Gill RS, et al. Neurology 2021;97:e1571-e1582.

Data pipeline

To evaluate performance, detection maps were compared to expert FCD manual labels. Sensitivity was tested in an independent cohort of 23 cases with FCD (13 ± 10 years). Applying the algorithm to 42 healthy controls and 89 controls with temporal lobe epilepsy tested specificity.

(A) T1-weighted MRI and prediction probability maps with the lesion circled. (B) Probability of the lesion and false-positive (FP) clusters sorted by their rank; superimposed line indicates the degree of confidence for each cluster. (C) Location of the focal cortical dysplasia (FCD) lesion (rank 1, highest confidence; purple) and FP clusters (ranks 2–5; blue). In these cases, the lesion has both the highest confidence (rank 1) and high probability (>0.8). S = site.

Gill RS, et al. Neurology 2021;97:e1571-e1582.

		No. Age, mean ± SD, y			Sensitivity, n (%)	FPs
Site	No.		Female, %	MRI+/MRI–, n	All patients	MRI-	
S1-I	45	27 ± 9	49	13/32	39/45 (87)	26/32 (81)	7 ± 4
S1-II	17	18 ± 9	65	2/15	15/17 (88)	13/15 (87)	7 ± 4
S2	08	11 ± 6	25	5/3	8/8 (100)	3/3 (100)	6 ± 5
S3	05	22 ± 17	80	2/3	5/5 (100)	3/3 (100)	1 ± 1
S4	11	8 ± 7	36	11/0	11/11 (100)	NA	8 ± 6
S5-I	10	23 ± 14	30	8/2	9/10 (90)	1/2 (50)	10 ± 6
S5-II	- The over	all sensitivity of the c	lassifier cross-v	alidation was 93%	6 (137 of 148 FC	D lesions	6 ± 7
S6	detected),	with 6 ± 5 FP cluster	s per patient		``````````````````````````````````````		3±3
S7	• - 85% of N When the	IRI-negative and 100 classifier was teste	% of MRI-posit d on the indep	ive lesions were d bendent cohort	etected.		8 ± 6
S8	- overall	sensitivity was 83% (19 of 23 FCD le	esions detected, 5	± 3 FP clusters	per patient)	6±5
S9	- 75% of	MRI-negative lesions	s and 100% of N	ARI-positive detec	ted	0,0 (100)	1 ± 2
Total	148	23 ± 13	47	49/51%	137/148 (93)	64/75 (85)	6 ± 5
Independent	23	13 ± 10	48	30/70%	19/23 (83)	12/16 (75)	5 ± 3

Abbreviations: FPs: false positive rate per cohort; NA = not applicable; S = site. Gill RS, et al. Neurology 2021;97:e1571-e1582. I and II refer to different MRI scanners for the same site. Independent refers to validation cohort from S1 and S2. Number refers to sample size.

Convolutional Neural Network Algorithm to Determine Lateralization of Seizure Onset in Patients With Epilepsy

A Proof-of-Principle Study

Erik Kaestner, PhD,* Jun Rao, MS,* Allen J. Chang, MS, Zhong Irene Wang, PhD, Robyn M. Busch, PhD, Simon S. Keller, PhD, Theodor Rüber, MD, Daniel L. Drane, PhD, Travis Stoub, PhD, Ezequiel Gleichgerrcht, Leonardo Bonilha, MD, PhD, Kyle Hasenstab, PhD,† and Carrie McDonald, PhD†

Neurology[®] 2023;101:e324-e335. doi:10.1212/WNL.000000000207411

Correspondence Dr. McDonald camcdonald@ health.ucsd.edu

Using a dataset of 359 patients with temporal lobe epilepsy (TLE) from 7 surgical centers Tested whether aCNN-based on T1-weighted images could classify seizure laterality concordant with clinical team consensus. This CNN was compared with a randomized model (comparison with chance) and

a hippocampal volume logistic regression (comparison with current clinically available measures).

Neurology 2023;101:e324-e335.

Data pipeline

Dataset of 359 patients with temporal lobe epilepsy (TLE) from 7 surgical centers Feature selection : image processing

CNN Model vs Hippocampal-Logistic Model

Across 100 runs, the CNN model was concordant with clinician lateralization on average 78% (SD = 5.1%) of runs with the best-performing model achieving 89% concordance.

The CNN outperformed the hippocampal volume model (average concordance of 71.7%) on 85% of runs with an average improvement of 6.25%.

Neurology 2023;101:e324-e335.

Feature Visualization of Differences Between L-TLE and R-TLE Patient Groups

Feature visualization maps revealed that in addition to the medial temporal lobe, regions in the lateral temporal lobe, cingulate, and precentral gyrus aided in classification. Neurology 2023;101:e324-e335.

RESEARCH ARTICLE

Convolutional Neural Network Algorithm to Determine Lateralization of Seizure Onset in Patients With Epilepsy

A Proof-of-Principle Study

Erik Kaestner, PhD,* Jun Rao, MS,* Allen J. Chang, MS, Zhong Irene Wang, PhD, Robyn M. Busch, PhD, Simon S. Keller, PhD, Theodor Rüber, MD, Daniel L. Drane, PhD, Travis Stoub, PhD, Ezequiel Gleichgerrcht, Leonardo Bonilha, MD, PhD, Kyle Hasenstab, PhD,† and Carrie McDonald, PhD†

Neurology[®] 2023;101:e324-e335. doi:10.1212/WNL.000000000207411

Classification of Evidence

This study provides Class II evidence that in patients with drugresistant unilateral temporal lobe epilepsy, a convolutional neural network algorithm derived from T1-weighted MRI can correctly classify seizure laterality.

Neurology 2023;101:e324-e335.

Correspondence

Dr. McDonald

camcdonald@ health.ucsd.edu DOI: 10.1111/epi.17522

CRITICAL REVIEW

Epilepsia

Artificial intelligence for the detection of focal cortical dysplasia: Challenges in translating algorithms into clinical practice

Lennart Walger¹ | Sophie Adler² | Konrad Wagstyl³ | Leonie Henschel⁴ | Bastian David¹ | Valeri Borger⁵ | Elke Hattingen⁶ | Hartmut Vatter⁵ | Christian E. Elger¹ | Torsten Baldeweg² | Felix Rosenow^{7,8} | Horst Urbach⁹ | Albert Becker¹⁰ | Alexander Radbruch¹¹ | Rainer Surges¹ | Martin Reuter^{4,12,13} | Fernando Cendes¹⁴ | Zhong Irene Wang¹⁵ | Hans-Jürgen Huppertz¹⁶ | Theodor Rüber¹

Epilepsia. 2023;64:1093–1112.

Data modalities of AI in epilepsy

Responsive neurostimulation

Nature Reviews Neurology 2024;20:319-36

Research

JAMA Neurology | Original Investigation

Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence

Jesper Tveit, PhD; Harald Aurlien, MD, PhD; Sergey Plis, PhD; Vince D. Calhoun, PhD; William O. Tatum, DO; Donald L. Schomer, MD; Vibeke Arntsen, MD; Fieke Cox, MD, PhD; Firas Fahoum, MD; William B. Gallentine, DO; Elena Gardella, MD, PhD; Cecil D. Hahn, MD; Aatif M. Husain, MD; Sudha Kessler, MD; Mustafa Aykut Kural, MD, PhD; Fábio A. Nascimento, MD; Hatice Tankisi, MD, PhD; Line B. Ulvin, MD; Richard Wennberg, MD, PhD; Sándor Beniczky, MD, PhD

To develop and validate an AI model (Standardized Computer-based Organized Reporting of EEG–Artificial Intelligence [SCORE-AI]) with the ability to distinguish abnormal from normal EEG recordings to classify abnormal EEG recordings into categories relevant for clinical decision-making: epileptiform-focal, epileptiform-generalized, nonepileptiform-focal, and nonepileptiform-diffuse

JAMA Neurol. 2023;80(8):805-812

Analyze using **MAPPING FUNCTION**

Data pipeline

30,493 recordings of patients referred for EEG were included into the development data set annotated by 17 experts

Feature selection

- 3 independent test data sets:
- a multicenter data set of 100 EEGs
- evaluated by 11 experts
- a single-center data set of 9785 EEGs evaluated by 14 experts
- a data set of 60 EEGs with external reference standard (for benchmarking with previously published AI models)

JAMA Neurol. 2023;80(8):805-812

The SCORE-AI achieved high accuracy, with an area under the receiver operating characteristic curve between 0.89 and 0.96 for the different categories of EEG abnormalities, and performance similar to human experts.

Benchmarking against 3 previously published AI models was limited to comparing detection of epileptiform abnormalities. The accuracy of SCORE-AI (88.3%; 95%CI, 79.2%-94.9%) was significantly higher than the 3 previously published models (P < .001) and similar to human experts.

Table 1. Gwet AC1 Agreement Coefficients for the 11 Human Experts, SCORE-AI, and the Human Expert Majority Consensus

	Agreement coefficient (95%	CI)
EEG recording category	Agreement among the human experts	Agreement between SCORE-AI and majority consensus of human experts
Normal	0.723 (0.649-0.796) ^a	0.903 (0.820-0.987) ^a
Epileptiform-focal	0.723 (0.643-0.803)	0.757 (0.634-0.880)
Epileptiform-generalized	0.901 (0.854-0.949)	0.928 (0.865-0.991)
Nonepileptiform-diffuse	0.630 (0.539-0.721)	0.738 (0.608-0.868)
Nonepileptiform-focal	0.587 (0.499-0.674)	0.775 (0.657-0.893)
Exact match/multiple abnormalities	0.497 (0.433-0.561) ^a	0.689 (0.611-0.766) ^a

Table 2. Average Accuracy of SCORE-AI and of the Human Experts With Respect to the Human Expert Majority Consensus on 100 EEGs From the Multicenter Test Data Set

	Average accuracy (95% Cl	Difference		
EEG recording category	SCORE-AI	Human experts	(P value)	
Normal	95.00 (89.61-97.88)	91.36 (88.04-94.10)	.09	
Epileptiform-focal	84.69 (76.73-90.54)	88.4 (84.35-91.91)	.12	
Epileptiform-generalized	94.9 (89.41-97.83)	95.36 (92.51-97.48)	.34	
Nonepileptiform-diffuse	84.69 (76.63-90.83)	86.09 (81.99-89.66)	.33	
Nonepileptiform-focal	85.71 (77.86-91.41)	85.25 (81.04-88.78)	.47	
Exact match/multiple abnormalities	65.31 (54.93-73.60)	66.7 (60.56-72.41)	.33	

Abbreviations: EEG, electroencephalography; SCORE-AI, Standardized Computer-based Organized Reporting of EEG-Artificial Intelligence.

^a Significant difference. Statistical comparisons were based on the 95% Cls. Significance means there was no overlap between the 95% Cls.

Abbreviations:

EEG, electroencephalography; SCORE-AI, Standardized Computer-based Organized Reporting of EEG-Artificial Intelligence. Figure. Receiver Operating Characteristics Curves on the Holdout Test EEG Data Set (n = 2549)

AUC indicates area under the curve.

RESEARCH ARTICLE

Development of Expert-Level Classification of Seizures and Rhythmic and Periodic Patterns During EEG Interpretation Neurology 2023;100:e1750-e1762

To develop and validate a computer algorithm that matches the reliability and accuracy of experts in identifying SZs and SZ-like events, known as "ictal-interictal- injury continuum" (IIIC) patterns on EEG, including SZs, lateralized and generalized periodic discharges (LPD, GPD), and lateralized and generalized rhythmic delta activity (LRDA, GRDA), and in differentiating these patterns from non-IIIC patterns

Jin Jing, PhD,* Wendong Ge, PhD,* Shenda Hong, PhD, Marta Bento Fernandes, PhD, Zhen Lin, Chaoqi Yang, Sungtae An, Aaron F. Struck, MD, Aline Herlopian, MD, Ioannis Karakis, MD, PhD, MSc, Jonathan J. Halford, MD, Marcus C. Ng, MD, Emily L. Johnson, MD, Brian L. Appavu, MD, Rani A. Sarkis, MD, MSc, Gamaleldin Osman, MD, MS, Peter W. Kaplan, MBBS, FRCP, Monica B. Dhakar, MD, MS, Lakshman Arcot Jayagopal, MD, Zubeda Sheikh, MD, MS, Olga Taraschenko, MD, PhD, Sarah Schmitt, MD, Hiba A. Haider, MD, Jennifer A. Kim, MD, PhD, Christa B. Swisher, MD, Nicolas Gaspard, MD, PhD, Mackenzie C. Cervenka, MD, Andres A. Rodriguez Ruiz, MD, Jong Woo Lee, MD, PhD, Mohammad Tabaeizadeh, MD, Emily J. Gilmore, MD, Kristy Nordstrom, AS, Ji Yeoun Yoo, MD, Manisha G. Holmes, MD, Susan T. Herman, MD, Jennifer A. Williams, MB, BAO, Bch, FRCPI, Jay Pathmanathan, MD, PhD, Fábio A. Nascimento, MD, Ziwei Fan, MS, Samaneh Nasiri, PhD, Mouhsin M. Shafi, MD, PhD, Sydney S. Cash, MD, PhD, Daniel B. Hoch, MD, PhD, Andrew J. Cole, MD, Eric S. Rosenthal, MD, Sahar F. Zafar, MD, Jimeng Sun, PhD,† and M. Brandon Westover, MD, PhD†

Analyze using **MAPPING FUNCTION**

Data pipeline

6,095 scalp EEGs from 2,711 patients with and without IIIC events Feature selection

Independent training and test data sets were generated from 50,697 EEG segments, independently annotated by 20 fellowship-trained neurophysiologists

IIIC event classification

Neurology 2023;100:e1750-e1762

Neurology 2023;100:e1750-e1762

Two-dimensional coordinates are calculated by an algorithm (UMAP) such that patterns assigned similar probabilities for each class by the model are near each other in the map. The map learned by SparCNet (model) forms a "starfish" pattern, with the 5 IIIC patterns (SZ, LPD, GPD, LRDA, and GRDA) emanating as arms from a central region containing non-IIIC patterns.

eFigure 11. The user graphical interface of "hybrid" method for expert to review model annotations.

Burden										
EEG	Seizure	LPD	GPD	LRDA	GRDA	EEG duration	Total time cost			
	%	%	%	%	%	(hour)	(minute)			
case01	2.74	0	89.79	0	1.01	12.81	3.13			
case02	3.16	83.17	0	10.28	0	12.90	2.28			
case03	0	0	94.57	0	0	12.82	1.61			
case04	0	76.03	21.80	0	0	12.47	2.00			
case05	0.29	0	0	90.58	0	13.27	2.21			
case06	1.33	53.26	11.04	0.11	0.25	12.75	2.14			
case07	0	0	0	69.18	3.92	12.67	2.00			
case08	16.11	0	0	24.53	2.46	12.96	2.92			
case09	0	0	0	27.50	47.64	13.48	1.82			
case10	0	11.28	0	13.57	17.07	12.60	2.01			
case11	6.38	23.70	0	20.07	0	12.00	2.35			
case12	14.46	2.73	0	3.63	0	12.00	2.18			
case13	34.75	0	11.48	0	19.22	12.00	1.72			
case14	1.73	95.30	0	2.97	0	12.00	1.59			
case15	1.75	40.56	3.20	9.14	8.30	12.00	1.90			

Important limitations

- SPaRCNet does not identify all EEG patterns of clinical relevance. Examples of other key patterns include burst suppression, nonrhythmic slowing, and nonperiodic epileptiform discharges

- SPaRCNet does not attempt to further characterize patterns. For example, it does not localize the onset of SZs, determine the frequency of discharges within GPDs or LPDs, and attempt to

determine the morphology of GPDs

- SPaRCNet categorizes all non-IIIC patterns as "other," whereas for clinically deployment, it is important to discriminate between physiologic non-IIIC patterns (e.g., "normal" vs burst suppression vs focal slowing) and to identify nonphysiologic patterns such as artifact

Data modalities of AI in epilepsy

Responsive neurostimulation

Nature Reviews Neurology 2024;20:319-36

JAMA Neurology | Original Investigation

Development and Validation of a Deep Learning Model for Predicting Treatment Response in Patients With Newly Diagnosed Epilepsy

Haris Hakeem, MD; Wei Feng, MS; Zhibin Chen, PhD, CStat; Jiun Choong, BEng; Martin J. Brodie, MD, PhD; Si-Lei Fong, MBBS; Kheng-Seang Lim, MBBS, PhD; Junhong Wu, MD; Xuefeng Wang, MD; Nicholas Lawn, MBChB; Guanzhong Ni, MD; Xiang Gao, MSc; Mijuan Luo, MD; Ziyi Chen, MD; Zongyuan Ge, PhD; Patrick Kwan, MD, PhD

OBJECTIVE To develop and validate a deep learning model using readily available clinical information to predict treatment success with the first ASM for individual patients.

Analyze using **MAPPING FUNCTION**

Data pipeline

A total of 2404 adults with epilepsy newly treated at specialist clinics in Scotland, Malaysia, Australia, and China between 1982 and 2020 were considered, of whom 606 (25.2%) were excluded due to missing information

Attention-based deep learning model "<u>the transformer model</u>" to predict the probability of treatment success with the first prescribed ASM

Table 1. Input Variables for the Machine Learning Models

Input variable	Categorization				
Sex	Male or female				
Age at treatment initiation	Age groups (tertiles), yª				
History					
Febrile convulsions	Yes or no				
Central nervous system infection in childhood	Yes or no				
Significant head trauma	Yes or no				
Cerebral hypoxic injury	Yes or no				
Substance abuse	Yes or no				
Alcohol abuse	Yes or no				
Epilepsy in first-degree relatives	Yes or no				
Presence of					
Cerebrovascular disease	Yes or no				
Intellectual disability	Yes or no				
Psychiatric disorder	Yes or no				
No. of pretreatment seizures	≤5 or >5				
Type of epilepsy	Focal, generalized, or unclassified				
Electroencephalog- raphy findings	Normal, abnormal epileptiform, or abnormal nonepileptiform				
Brain imaging findings ^b	Normal, abnormal epileptogenic, or abnormal nonepileptogenic				
Drug used	Carbamazepine, lamotrigine, levetiracetam, oxcarbazepine, phenytoin, topiramate, or valproate				

^a Tertiles are 18 to 29 years, older than 29 to 46 years, and older than 46 years.

^bComputed tomography or magnetic resonance imaging.

Table 3. Comparison of Model Performance on the Test Set of the Pooled Cohort

Model parameter	Transformer	Multilayered perceptron	Logistic regression	Support vector machine	XGBoost	Random forest
Mean AUROC (95% CI)	0.65 (0.63-0.67)	0.63 (0.60-0.66)	0.61 (0.58-0.64)	0.61 (0.59-0.63)	0.60 (0.58-0.62)	0.58 (0.56-0.60)
Weighted balanced accuracy (95% CI)	0.62 (0.60-0.64)	0.59 (0.57-0.61)	0.60 (0.58-0.62)	0.57 (0.55-0.59)	0.59 (0.57-0.61)	0.59 (0.57-0.61)
Sensitivity (95% CI)	0.69 (0.66-0.72)	0.59 (0.55-0.63)	0.54 (0.52-0.56)	0.65 (0.62-0.68)	0.54 (0.52-0.56)	0.47 (0.44-0.50)
Specificity (95% CI)	0.55 (0.52-0.58)	0.60 (0.57-0.63)	0.63 (0.60-0.66)	0.52 (0.49-0.55)	0.61 (0.58-0.64)	0.62 (0.59-0.65)

Abbreviation: AUROC, area under the receiver operating characteristic curve.

The transformer model that was trained using the pooled cohort had an AUROC of 0.65 (95%CI, 0.63-0.67) and a weighted balanced accuracy of 0.62 (95%CI, 0.60-0.64) on the test set.

able 4. Model Performance	After Training Exclusively	y on the Glasgow Cohort (N = 1065)
---------------------------	----------------------------	------------------------------------

	Type of model ^a									
Model parameter	Multilayered Transformer perceptron Logistic regression		Support vector machine XGBoost		Random forest					
Kuala Lumpur cohort (n = 242)										
Mean AUROC	0.58 (0.57-0.59)	0.55 (0.53-0.57)	0.57 (0.55-0.59)	0.57 (0.55-0.59)	0.57 (0.55-0.59)	0.46 (0.44-0.48)				
Weighted balanced accuracy	0.58 (0.56-0.60)	0.52 (0.50-0.54)	0.56 (0.54-0.58)	0.54 (0.52-0.56)	0.55 (0.53-0.57)	0.49 (0.47-0.51)				
Sensitivity	0.46 (0.44-0.48)	0.55 (0.51-0.59)	0.56 (0.52-0.60)	0.59 (0.55-0.63)	0.50 (0.47-0.53)	0.38 (0.35-0.41)				
Specificity	0.65 (0.61-0.69)	0.50 (0.46-0.54)	0.56 (0.53-0.59)	0.50 (0.47-0.53)	0.59 (0.56-0.62)	0.55 (0.53-0.57)				

CONCLUSIONS AND RELEVANCE In this cohort study, a deep learning model showed the feasibility of personalized prediction of response to ASMs based on clinical information. With improvement of performance, such as by incorporating genetic and imaging data, this model may potentially assist clinicians in selecting the right drug at the first trial.

Sensitivity	0.41 (0.39-0.43)	0.50 (0.47-0.53)	0.50 (0.47-0.53)	0.50 (0.47-0.53)	0.59 (0.56-0.62)	0.42 (0.39-0.45)	
Guang, The mod	del that was tr	ained using the	e largest coh	ort only had	AUROCs ra	nging from 0.	52 to 0.60
(n = 1 Meal and a we	eighted baland	ced accuracy r	anging from	0.51 to 0.62	in the extern	nal validation	cohorts.
Weighted balanced accuracy	0.51 (0.49-0.53)	0.48 (0.46-0.50)	0.52 (0.50-0.54)	0.49 (0.47-0.51)	0.49 (0.47-0.52)	0.45 (0.43-0.47)	
Sensitivity	0.47 (0.44-0.50)	0.47 (0.44-0.50)	0.53 (0.50-0.56)	0.49 (0.46-0.52)	0.49 (0.46-0.52)	0.44 (0.40-0.48)	
Specificity	0.55 (0.52-0.58)	0.50 (0.46-0.54)	0.50 (0.47-0.53)	0.47 (0.44-0.50)	0.51 (0.49-0.53)	0.46 (0.43-0.49)	

Abbreviations: AUROC, area under the receiver operating characteristic curve; XGBoost, extreme gradient boosting.

^a The numbers in parentheses are 95% Cls.

Received: 13 February 2023 Revised: 30 April 2023 Accepted: DOI: 10.1111/epi.17637

RESEARCH ARTICLE

Predicting seizure outco need more complex mod

Maria H. Eriksson^{1,2,3,4} Mathilde Friederike Moeller⁶ Krishna B. John Booth⁸ Kirstie J. Whitaker⁴ Ana Perez Caballero⁹ Lara Menzie J. Helen Cross^{1,3,5,11} Torsten Balc

Epilepsia. 2023;64:2014–2026.

Results: Our logistic regression achieved an accuracy of 72% (95% confidence interval [CI] = 68% - 75%, area under the curve [AUC] = .72), whereas our multilayer perceptron and XGBoost both achieved accuracies of 71% (95% $CI_{MLP} = 67\% - 74\%$, $AUC_{MLP} = .70$; 95% $CI_{XGBoost own} = 68\% - 75\%$, $AUC_{XGBoost own} = .70$). There was no significant difference in performance between our three models (all p > .4) and they all performed better than the external XGBoost, which achieved an accuracy of 63% (95% CI = 59%-67%, AUC = .62; p_{LR} = .005, p_{MLP} = .01, $p_{XGBoost own}$ = .01) on our data. All models showed improved performance with increasing sample size, but limited improvements beyond our current sample. The best model performance was achieved with data-driven feature selection.

Significance: We show that neither the deployment of complex machine learning models nor the assembly of thousands of patients alone is likely to generate significant improvements in our ability to predict postoperative seizure freedom. We instead propose that improved feature selection alongside collaboration, data standardization, and model sharing is required to advance the field. Received: 12 November 2019 Revised: 23 January 2020 Accepted: 23 January 2020

DOI: 10.1111/epi.16447

FULL-LENGTH ORIGINAL RESEARCH

Same same by revealed class cortical malfo

Data pipeline

FEATURE SELECTION

Input Data identified

- manually
- based on expert level knowledge
- by algorithm

1. Al needs "gold standard labels" for evaluation

- Garbage in \rightarrow a lot of garbage out
- Example
- EEG: expert to expert agreement of seizure is low
- Electronic medical record: incomplete
- ICD codes: limited codes for epilepsy

2. Training data reflects where we can apply the particular AI program

Data pipeline

FEATURE SELECTION

Input Data identified

- manually
- based on expert level knowledge
- by algorithm

Analyze using **MAPPING FUNCTION** that generate output prediction

OUTPUT PREDICTION

Hallucinations

Multilayers artificial neural networks process data through layers of nodes, passed through a nonlinear activation these may in turn proceed through add

- Advantages
 - Do more work in less time
 - Improve clinical decision in challenging situations
- Limitations
 - Need large number of "good" data
 - Machines only knows what it has seen in training
 - Require supervision
 - Hallucinations

Al will not replace clinicians, but clinician assisted by Al will replace clinician without Al.

> Wesly T. Kerr, MD., PhD University of Pittsburgh

EMH: Emergency Medical Hologram (Star Trek: Voyager)

