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Artificial intelligence (Al)

“A Field of computer science focused on creating systems to
perform tasks that typically require human intelligence, such
as visual perception, speech recognition, decision-making
and language translation”

“A field of research in computer science that develops and
studies methods and software that enable machines

to perceive their environment and use learning and
intelligence to take actions that maximize their chances of
achieving defined goals”



https://en.wikipedia.org/wiki/Field_of_research
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Machine_perception
https://en.wikipedia.org/wiki/Machine_learning
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Charles Babbage
1791 -1871

Invented the first mechanical computer, the Difference Engine,
that eventually led to more complex electronic designs



https://en.wikipedia.org/wiki/Mechanical_computer
https://en.wikipedia.org/wiki/Difference_Engine

Alan Turing
(23 June 1912 — 7 June 1954)

Military Model Enigma |,
in use from 1930

MENEDICT CUMBERBATCH IS OUTSTANDING'
*

L
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THE TRUE ENIGMA WAS THE
MAN WHO CRACKED THE CODR

Automatic ( * BENEDICY T H E KEIRA

UMBERDATCH KNIGHTLEY

a Britishearl MITATION GAME

stored-progr .
byA|an TurirlN CINEMAS NOVEMBER 14



https://en.wikipedia.org/wiki/Electronic_storage
https://en.wikipedia.org/wiki/Serial_computer
https://en.wikipedia.org/wiki/Stored-program_computer
https://en.wikipedia.org/wiki/Alan_Turing
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The ENIAC, or Electronic Numerical Integrator and Computer, was the result of a U.S. government-funded project during
World War Il to build an electronic computer that could be programmed. The project was based out of the

University of Pennsylvania's Moore School of Engineering. The design team included engineer J. Presper Eckert Jr.

and physicist John Mauchly under the leadership of Herman Goldstine. The team began work on the project in 1943.
John von Neumann, a noted mathematician of the day, began consulting on the project in 1944.



Example of Al

Web search engines Go g Ie
Recommendation systems ° vou'l'ube N E T FL I x

Siri

7
D

Interaction via speech amazon alexa

==

. .
Generative and creative tools @ ChatGPT Gem|n| Claude

Use “large language model”

Games eg. computer chess

Llama {‘g‘}




Terms

Machine Learning

* A subset of artificial intelligence that

involves development of algorithms
and statistical models that enable
computers to improve their
performance on a specific task through
experience or data without being
explicitly programmed for that task

Involves using data to train a computer
algorithm to maximize its performance
based on a single quantitative metric
(e.g., accuracy)

Artificial intelligence

A Field of computer science focused on
creating systems to perform tasks that
typically require human intelligence

Aims to perform a broad range of tasks,
including tasks for which there has not
been explicit training, and can do so using
multiple ML tools

Deep learning
A machine learning technique that

uses layered neural networks to

analyse and interpret vast amounts
of data



Data pipeline

rEATgRE SELECTION Analyze using SUTPUT
INPUT DATA Input Data MAPPING FUNCTION
identified PREDICTION
that generate output
- manually

prediction
- based on expert level knowledge

- by algorithm



Data modalities of Al in epilepsy
Neuroimaging Electrophysiology

Structural Functional

Scalp EEG
vy ¥

PET

.

Intracranial EEG

— o

Multimodal integration

Medical devices Electronic health records

Natural language processing

P AW ),

Responsive neurostimulation

Nature Reviews Neurology 2024;20:319-36



Overview of machine learning concepts

* Supervised learning
* Unsupervised learning



Supervised learning

Eg. Annotated EEG recordings may be used to |
] train an algorithm to automatically detect

(Al I.epileptiform discharges.

Nature Reviews Neurology 2024;20:319-36

L.
The algorithm learns by
analysing these data
and making predictions
or decisions that are
refined according to
accuracy against the
known labels

Unsupervised learning
An algorithm is trained
with an unlabelled
dataset, allowing
autonomous
identification of
patterns and structures
in the data. Can
uncover patterns and
intrinsic structures,

Eg algorithm identify candidate epileptiform discharges by
detecting outliers from the background EEG recording

NANs LWL lu AL INI T IRALING W,

without guidance

Red label
©
® ©

Blue label

© ©
A
© ¢ ©
Orange label

Cluster 1

Cluster 2

Cluster 3




Overview of machine learning concepts

« Commonly used mapping functions
— Random forest
— K nearest neighbor (k-NN) classification
— Support vector machine



The random forest

Algorithm generates a forest of decision trees,

each utilizing subsets of input features

as bifurcation points to differentiate the

training data into expected outputs

the output of the ensemble (eg, the majority vote) is
ey reported for new inputs.

Nature Reviews Neurology 2024;20:319-36



k-nearest neighbor classification

an input is plotted as a vector within a

feature space alongside labeled data,

and is subsequently assigned to

the class of its k nearest neighbors (here, k = 4).

Nature Reviews Neurology 2024;20:319-36



Support vector machine

generate a hyperplane in a higher-dimensional
feature space to maximally separate clusters of
labeled training data, providing a decision boundary
for classifying new inputs

Nature Reviews Neurology 2024;20:319-36



In cross-validation

a subset of the training data is withheld as the validation set (yellow),

allowing for fine-tuning of an algorithm parametrized on the training set (light green);
after multiple iterations (here showing K-fold cross-validation with K = 5),

the algorithm may be tested on an initially withheld testing set (dark green)

to assess accuracy and generalizability of the finalized model

Nature Reviews Neurology 2024;20:319-36



Multilayers artificial neural networks
process data through layers of nodes, in each of which weighted inputs are summated and

passed through a nonlinear activation function to yield intermediary outputs;
these may in turn proceed through additional layers of nodes as desired, ultimately reaching output nodes

Nature Reviews Neurology 2024;20:319-36



Input layer Multiple hidden layer Output layer

See video “Stat Quest”’ on YOUTUBE

Multilayers artificial neural networks
process data through layers of nodes, in each of which weighted inputs are summated and

passed through a nonlinear activation function to yield intermediary outputs;
these may in turn proceed through additional layers of nodes as desired, ultimately reaching output nodes

Nature Reviews Neurology 2024;20:319-36
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Data modalities of Al in epilepsy

Neuroimaging Electrophysiology

Structural Functional

Electronic health records

PET [

'

Medical device:

y '//>\ ‘
( (/ //&
\

Wearable device

Natural language processing

B el e e S ]

Nature Reviews Neurology 2024;20:319-36

Responsive neurostimulation



Received: 24 June 2023 Accepted: 29 July 2023

DOI: 10.1002/epi4.12800

Epilepsia Open™

ORIGINAL ARTICLE

Epilepsy classification using artificial intelligence:
A web-based application

Ali A. Asadi-Pooya'? | Davood Fattahi' | Nahid Abolpour' | Reza Boostani’
Mohsen Farazdaghi' ® | Mehrdad Sharifi*>*

To evaluate the feasibility of using easily accessible and applicable clinical information
(based on history taking and physical examination) in order to make a reliable differentiation
between idiopathic generalized epilepsy (IGE) versus focal epilepsy using machine learning (ML) methods.

Epilepsia Open. 2023;8:1362—1368



Data pipeline

FEATURE SELECTION Analyze using OUTPUT
INPUT DATA
Input Data MAPPING FUNCTION PREDICTION
identified that generate output
- manually prediction
- based on expert level knowledge
- by algorithm
All patients with an electro-clinical The first Different types of classifiers were assessed
diagnosis of IGE or focal epilepsy, author selected and the final classification was made
at the outpatient epilepsy clinic at a set of clinical based on their best results using
Shiraz University, Shiraz, Iran, from features the stacking method

2008 until 2022, were included

1445 patients; 964 with focal

SIPIIEREY EINE A1 Wi €IS First phase of the study was a retrospective study of a prospectively

developed and maintained database.
Epilepsia Open. 2023;8:1362—1368



Feature Selection

The first author selected a set of clinical features that are

(1) easily obtainable even by people who are not experts in the field and

(2) helpful in making a diagnosis of epilepsy type/syndrome (differentiating focal
epilepsy from IGE) based on the previous literature.

Other clinical features [eg, an exact diagnosis of seizure types (eg, focal seizure with
impaired awareness vs absence seizures)] that are very helpful in differentiating focal
epilepsy from IGE, but need a skillful expert were not included

The study did not include EEG and imaging findings.

Epilepsia Open. 2023;8:1362—1368



Epilepsy Classifier: IGE vs Focal

Age at onset: (years, e.g. 12, 13, etc.)

Sex: (1 for Male, 2 for Female)

Febrile convulsion: (1 for Yes, 2 for No)

| |
Family history of epilepsy: (1 for Yes, 2 for No)
| i

Major head injury: (1 for Yes, 2 for No)
|

Medical comorbidity: (1 for Yes, 2 for No)

| |
Aura: (an integer from 1 to 17, see | HERE )

Exam: (1 for Normal, 2 for Abnormal)

Description:

Project details: The present online application aims to utilize clinical information of
patients with epilepsy (PWE) to differentiate focal epilepsy from idiopathic
generalized epilepsy (IGE) by application of machine learning methods. Nine easily
obtainable clinical features (based on a detailed history and physical examination)
are utilised as the inputs. The classification framework benefits from multiple
classifiers and their best results are exploited by a Stacking classifier to perform the
final classification. The training procedure is carried out on a large database of PWE
built over 14 years at the epilepsy center at Shiraz University of Medical Sciences,
Iran, from 2008 until 2022. More technical details can be found in the related
publication.

Input parameters: including age at seizure onset, sex, a history of febrile
convulsion, a family history of epilepsy, a history of severe head injury, a history of
medical comorbidity, aura with seizures, ictal-related tongue biting, and abnormal
physical examination.

Aura types: 1 = No aura, 2 = Indescribable feeling, 3 = Dizziness, 4 = Fear /
Nervousness / Anxiety / Adrenaline rush, 5 = Cognitive / Deja vu / Jamais vu / Forced
thinking, 6 = Epigastric / Abdominal / Nausea, 7 = Elementary visual, 8 = Complex
visual, 9 = Elementary auditory, 10 = Complex auditory, 11 = Olfactory, 12 =

| | Aura types: 1 = No aura, 2 = Indescribable feeling, 3 = Dizziness, 4 = Fear/

Tongue biting: (1 for Yes, 2 for No)

Nervousness / Anxiety / Adrenaline rush, 5 = Cognitive / Deja vu / Jamais vu / Forced

[ | thinking, 6 = Epigastric / Abdominal / Nausea, 7 = Elementary visual, 8 = Complex yost
visual, 9 = Elementary auditory, 10 = Complex auditory, 11 = Olfactory, 12 =
Gustatory / Taste, 13 = Left focal sensory, 14 = Right focal sensory, 15 = Other

sensory, 16 = Headache, 17 = Other.

Epilepsia Open. 2023;8:1362—1368

http://www.epiclass.ir/f-ige.



Precision Sensitivity Specificity F1-score

Classifiers FE IGE Avg FE IGE Avg FE IGE Avg FE IGE Avg
Stack 0.87 0.71 0.81 0.85 0.74 0.81 0.74 0.85 0.77 0.86 0.72 0.81
SVM 0.83 0.68 0.78 0.85 0.66 0.79 0.66 0.85 0.72 0.84 0.67 0.78
LogReg 0.83 0.67 0.78 0.84 0.66 0.78 0.66 0.84 0.72 0.84 0.67 0.78
KNN 0.87 0.66 0.80 0.76 0.80 0.78 0.76 0.80 0.78 0.84 0.71 0.79
RanFor 0.85 0.69 0.80 0.84 0.70 0.79 0.70 0.84 0.77 0.85 0.69 0.80
GridBoost 0.88 068 Also, in order to enable and facilitate future external validation studies by other peers
and professionals, the developed and trained ML model was implemented

AdaBoost 0.87 0.69 . . . C . : :

. and published via an online web-based application that is freely available
Bagging 0.86 068  at http://www.epiclass.ir/f-ige.
ExtRa Trees 0.82 0.71 0.78 0.89 0.60 0.79 0.60 0.89 0.70 0.85 0.66 0.79

Note: Each row represents a classifier while their precision, sensitivity, specificity, and F1-score are in the columns for focal epilepsy (FE), idiopathic
generalized epilepsy (IGE), and their average.

This study developed a pragmatic algorithm aimed at epilepsy classification (IGE vs focal epilepsy) for individuals
whose epilepsy begins at age 10 years and older

The algorithm has the precision: 0.81, sensitivity: 0.81, and specificity: 0.77.

This algorithm is that it could be used by people who are not experts in epilepsy diagnosis (eg, internists, etc.)

Epilepsia Open. 2023;8:1362—1368



Data modalities of Al in epilepsy

Neuroimaging

Structural Functional

Responsive neurostimulation

Natural language processing

Electrophysiology

Scalp EEG
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Received: 30 July 2022 l Accepted: 30 September 2022

DOI: 10.1111/ane.13716

Neurologica

REVIEW ARTICLE WILEY

Seizure detection based on wearable devices: A review of
device, mechanism, and algorithm

Wen Li'® | Guangming Wang'® | Xiyuan Lei'® | Duozheng Sheng!® | Tao Yu?® |
Gang Wang1

Li W, et al. Acta Neurol Scand. 2022;146:723—731



Data pipeline

INPUT DATA FEAILINE =
Input Data
identified
- manually
- based on ¢
- by algorith

ACM: acceralometer
SsEMG

EKG

EDA: electrodermal activity

PPG: photoplethysmography
EEG: behind ears

Input data
selected
based on
different
criteria

- Time
Frequency

OUTPUT
PREDICTION

Different types of classifiers
KNN

SVM

RF

gradient tree boosting

Epilepsia Open. 2019;4:309-317



First author

Johansson”®

Dong57
Dong58
Conradsen®
Beniczky?®
Baumga rtner>’

You®®

Frankel®®

You®!

Vandecasteele®

Forooghifar65

Cooman®®

Baghersalimi®’

Poh!®

Milosevic®

Onorati'?

Vandecasteele®®

Bottcher®?

Nasseri®?

Bottcher’®

Subjects
(n)

11
5
7

11

11

20

12

10

16
11
18
24
29

22
135

10
10

9

Seizures

37 TCS
379 GTCS
547 MS
22 GTCS
32 GTCS
47 MS

56 MS

24 FS

52 MS
47 FS

154 FS
227:FS

277°FS;
FTCb

16 GTCS
22 GTCS

55 MS
896 FS

21TCS
19 MS

20 MS

Signal

ACM

ACM

ACM

sEMG

SEMG

sEMG
behind-the-ear EEG
behind-the-ear EEG

behind-the-ear EEG
ECG, PPG

ECG

ECG

ECG

ACM, EDA
ACM, sEMG

ACM, EDA

behind-the-ear EEG,
ECG

ACM, EDA

ACM, EDA, PPG,
temperature

ACM, EDA, PPG

Feature set

Time, frequency

Time, frequency

Time, frequency

Time

Time

Frequency, time-frequency
Time-frequency

Time, frequency, time-
frequency, nonlinear

frequency

Time

Time, frequency, nonlinear
Time

Time

Time, frequency, nonlinear

Time, frequency, time-
frequency, nonlinear

Time, frequency, nonlinear

Time, frequency, nonlinear

Time, frequency

Time

Time. freauency

FDR
(/h)

0.05
0.01
0.04
0.04
0.03
/

0.14
0.09

0.83
2:34

0.03
0.04

0.01
1.85

0.01
0.10

0.56

ity of 72-100%

FDR= false
discovery
rate

SEN
Algorithm (%)
KNN 100
RF 88.01
two-layer ensemble model 76.84
threshold 100
threshold 93.80
threshold 72
GAN, threshold 96.30
RF 90
VAE based on RNN 90.40
SVM 70
RF Sensitiv
SVM
ey DR 0f 0.01-2.11/hr
SVM 94
SVM 91
SVM 94.55
RF 92
Gradient tree boosting 91
LSTM 93
Gradient tree boosting 75

Abbreviations: FMS, focal motor seizure; FS, focal seizure; FTCb, focal to bi L| W, et al- ACta NeU r0| Scand- 2022, 1 46723—731



Alert Sent

Your caregivers have been notified.

SPEAC® System
Brain Sentinel® Monitoring and Alerting System

Embrace2 non-EEG physiological signal-based seizure
: monitor ACM, EDA, PPG and temperature monitoring system: record sEMG

ACM: acceralometer, EDA: electrodermal activity, PPG: photoplethysmography



TABLE 1 Wearable seizure monitor available in the market

Device

Smart Watch'*14

Epi-Care'6/

Embrace2?!

Epilert??

EDDI%%

SPEAC?334

ePatch?

Epilog?

Sensor Dot

Nightwatch?®

IMEC36:%7

Company

SmartMonitor

Danish Care Technology
Empatica

Tekru Technologies
IctalCare

Brain Sentinel
BioTelemetry

Epitel

Byteflies

LivAssured BV

imec/Holst Centre

Wear site

Wrist/ankle

Wrist

Wrist

Wrist

Brachial biceps muscles
Biceps and triceps brachii
Left ribs

Scalp below hairline
Behind ear (optional)
Armband

Armband and patches on chest

Signal

ACM

ACM

ACM, EDA, PPG and temperature
ACM, EDA, PPG and temperature
SEMG

SEMG

ECG

EEG

EEG

ACM and PPG

ACM, EDA, ECG, and SEMG

Abbreviations: CS, convulsive seizure: FMS, focal motor seizure: FS, focal seizure; TCS, tonic-clonic seizure.

Li W, et al. Acta Neurol Scand. 2022;146:723—731

Targeted seizure

CS, FMS

GTCS

GTCS

TCS

GTCS

GTCS

CS and non-CS with autonomic changes
Depend on paired software
Typical absence

CS at night

FS

Certificate

Not reported
CE

FDA and CE
Not reported
CE

FDA

Not reported
No FDA

CE

CE

Not reported

Battery
life
30h
24h
48h+
48h
8h
12h
72h
168h
24h

96h



Received: 31 March 2020 Revised: 23 April 2020 Accepted: 27 April 2020

DOI: 10.1111/epi.16541

Epilepsia

SUPPLEMENT ARTICLE

Seizure forecasting and cyclic control of seizures

Rachel E. Stirling! | Mark J. Cook?> | David B. Grayden' | Philippa J. Karoly?

Epilepsia.2021;62(8uppl.1):82—814. Y 3 4 5 &N

15 16 17 18 19 20 21
22 23 2526 27 28

29 30
Low risk days
! High risk days
LOW RISK

High Risk Warning
High chance of seizure next
10 minutes

D. Possible user interface designs

A. Wearable, mobile, clinical, implantable

. B. Patient specific risk-factors




DBS / RNS
Limited EEG, epileptic events
stimulation

Cortical (research)
continuous EEG
stimulation

SN\ MAAA A
m \W— Suh-sealn (clinical trial)
, Seizure

PN At i) oo

PIAMA AN AANAA AR A AAA A
Pre-ictal

vV ’war\"w" 2 (B }lﬁ‘. R A
‘vM-‘\le.w"
\ J 5s | 0.7mV

| o morelen T P

Mobile App
Diary, weather, medication,
self report (i.e. mood/stress),
accelerometery

Biomarkers and available recording device

Chance of seizure

NV VYV

Epilepsia. 2021;62(Suppl. 1):S2-S14. ¥ lesslikely




Data modalities of Al in epilepsy

Neuroimaging Electrophysiology

Structural Functional

Nature Reviews Neurology 2024;20:319-36

Responsive neurostimulation



RESEARCH ARTICLE

Multicenter Validation of a Deep Learning
Detection Algorithm for Focal Cortical Dysplasia

Ravnoor Singh Gill, PhD-cand, Hyo-Min Lee, PhD-cand, Benoit Caldairou, PhD, Seok-Jun Hong, PhD, Correspondence
Carmen Barba, MD, Francesco Deleo, MD, Ludovico D'Incerti, MD, Vanessa Cristina Mendes Coelho, MD, Dr. Bernasconi
Matteo Lenge, PhD, Mira Semmelroch, PhD, Dewi Victoria Schrader, MD, Fabrice Bartolomei, MD, andrea.bernasconi@
Maxime Guye, MD, PhD, Andreas Schulze-Bonhage, MD, Horst Urbach, MD, Kyoo Ho Cho, MD, mcgill.ca

Fernando Cendes, MD, PhD, Renzo Guerrini, MD, Graeme Jackson, MD, R. Edward Hogan, MD,
Neda Bernasconi, MD, PhD,* and Andrea Bernasconi, MD*

Neurology® 2021;97:e1571-e1582. doi:10.1212/WNL.0000000000012698

Gill RS, et al. Neurology 2021;97:e1571-e1582.



Analyze using OUTPUT
INPUT DATA FEATURE SELECTION MAPPING FUNCTION PREDICTION

Data pipeline

3D T1-weighted and 3D FLAIR MRI Feature selection Deep convolutional neural network
of 148 patients with histologically : image processing (CNN) classifier
verified FCD at 9 centers

@ s 003

Training | §) Extract lesional and [ < | _ Discard improbable candidates _* -
& W5 3:1 nonlesional patches based on mean probability map 2 Final prediction
ip R )¢ | ; . . l
L&* | | it 4R
| Mean of 20 SN RRe A 73
A e o SS’SP.':;%E“;:&E;; : FWE Sk
4 (‘ '“ 2 ’-’{‘ %} : ('Jd opout) | :‘ :" ‘ .?
Sy & «vgs P> 010 S D / "“\‘ .
Inference = ‘ ‘ :: ;:: Extract patCheS > _' [,‘ A ‘ —> tCNN I Mean UncertamutYI .
(testing) g™ ‘ ~ B 4 57 ‘ P ) ‘ -; Mean and variance of ™ 0.0
< - ; X, " '( 50 f d
£/ ﬂ‘f\\\L‘J\,‘? YA Trained model 1 i f’i 2" :’*m\ Trained model 2 S e
s d L - Gill Ré ‘et al. Neurology 2021;97:e1571-e1582.

To evaluate performance, detection maps were compared to expert FCD manual labels.
Sensitivity was tested in an independent cohort of 23 cases with FCD (13 = 10 years).
Applying the algorithm to 42 healthy controls and 89 controls with temporal lobe epilepsy tested specificity.



A Probability B g @ Lesion
Low NN High @ 1.0 @ FP cluster
©
£ 0.81
S 0.6-
Patient 1 E 0.4
2 0.2
S 0.0-
a 12345678910
z=45
(]
c 1.0-
S
(= 0.8"
S 0.6
Patient 2 &
2 0.41
S 0.21
ol
o 0.0-
o 12345678910
x =-47
g
c 1.0+
(<]
£ 0.8
C
S 067
Patient 3 2 041
E 0.2-
2 0.0-
o 12345678910

X ==37

Rank (by degree of confidence) X =-37

(A) T1-weighted MRI and prediction probability maps with the lesion circled. (B) Probability of the lesion and false-positive (FP) clusters sorted by their rank;
superimposed line indicates the degree of confidence for each cluster. (C) Location of the focal cortical dysplasia (FCD) lesion (rank 1, highest confidence;
purple) and FP clusters (ranks 2-5; blue). In these cases, the lesion has both the highest confidence (rank 1) and high probability (>0.8). S = site.

Gill RS, et al. Neurology 2021;97:e1571-e1582.



Sensitivity, n (%)

Site No. Age, mean +SD, y Female, % MRI+/MRI—-, n All patients MRI- FPs
S1-I 45 27 £9 49 13/32 39/45 (87) 26/32 (81) 7+4
S1-II 17 18+ 9 65 2/15 15/17 (88) 13/15 (87) 7 &4
) 08 11+6 25 5/3 8/8 (100) 3/3 (100) 6+5
S3 05 22 +17 80 2/3 5/5 (100) 3/3 (100) 141
S4 11 8+7 36 11/0 11/11 (100) NA 8+6

S5-1 10 23+ 14 30 8/2 9/10 (90) 1/2 (50) 10+ 6

S5l - The overall sensitivity of the classifier cross-validation was 93% (137 of 148 FCD lesions 67
S6 detected), with 6 £ 5 FP clusters per patient 353
- - 85% of MRI-negative and 100% of MRI-positive lesions were detected. .

a0 . +

When the classifier was tested on the independent cohort B
S8 - overall sensitivity was 83% (19 of 23 FCD lesions detected, 5 + 3 FP clusters per patient) 6+5
% - 75% of MRI-negative lesions and 100% of MRI-positive detected o5

L o e o e Lo o o) o) +
Total 148 23 +13 47 49/51% 137/148 (93) 64/75 (85) 6+5
Independent 23 13+10 48 30/70% 19/23 (83) 12/16 (75) 543

Abbreviations: FPs: false positive rate per cohort; NA = not applicable; S = site. Gill RS, et al. Neurology 2021;97:€1571-e1582.
I and Il refer to different MRI scanners for the same site. Independent refers to validation cohort from S1 and S2. Number refers to sample size.



RESEARCH ARTICLE

Convolutional Neural Network Algorithm to
Determine Lateralization of Seizure Onset in Patients
With Epilepsy

A Proot-of-Principle Study

Erik Kaestner, PhD,* Jun Rao, MS,* Allen J. Chang, MS, Zhong Irene Wang, PhD, Robyn M. Busch, PhD, Correspondence
Simon S. Keller, PhD, Theodor Ruber, MD, Daniel L. Drane, PhD, Travis Stoub, PhD, Ezequiel Gleichgerrcht, Dr. McDonald
Leonardo Bonilha, MD, PhD, Kyle Hasenstab, PhD,T and Carrie McDonald, PhDt camcdonald@

® health.ucsd.edu
Neurology 2023;101:e324-e33S. doi:10.1212/WNL.0000000000207411

Using a dataset of 359 patients with temporal lobe epilepsy (TLE) from 7 surgical centers
Tested whether aCNN-based on T1-weighted images could classify seizure laterality concordant

with clinical team consensus.
This CNN was compared with a randomized model (comparison with chance) and

a hippocampal volume logistic regression (comparison with current clinically available measures).

Neurology 2023;101:e324-e335.



Analyze using OUTPUT

INPUT DATA FEATURE SELECTION MAPPING FUNCTION PREDICTION

Data pipeline

Dataset of 359 patients with Feature selection Deep convolutional neural network
temporal lobe epilepsy (TLE) from 7 - Image processing (CNN) classifier
surgical centers

Optimizing slice selection Input layers
3 Convolutional layers Classification Decision
layer
. . 15t Convolution layer 2" Convolution layer 3" Convolution layer
Coronal slice selection 8 3x3 filters 16 3x3 filters 32 33 filters

0.75+ ]

f F
0.70- ’ | e
' |
’3, y
S 0.65- c
— n
3 n
S 0.60- e
< t
e
0.55+ d
|
a
0.50 1 y —> R-TLE
r
Finer grained patterns Coarser grained patterns
(higher dimensional) > (lower dimensional)

Neurology 2023;101:e324-e335. Gray mattertssue patterns



Accuracy (%)

CNN Model vs Hippocampal-Logistic Model
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Across 100 runs, the CNN model was concordant with clinician lateralization on average 78% (SD = 5.1%)
of runs with the best-performing model achieving 89% concordance.

The CNN outperformed the hippocampal volume model (average concordance of 71.7%) on 85% of runs

with an average improvement of 6.25%.
Neurology 2023;101:e324-e335.



Feature Visualization of Differences Between L-TLE and R-TLE Patient Groups

140

Feature visualization maps revealed that in addition to the medial temporal lobe, regions in the lateral temporal lobe,
cingulate, and precentral gyrus aided in classification. Neurology 2023:101:6324-335



RESEARCH ARTICLE

Convolutional Neural Network Algorithm to
Determine Lateralization of Seizure Onset in Patients
With Epilepsy

A Proof-of-Principle Study

Erik Kaestner, PhD,* Jun Rao, MS,* Allen J. Chang, MS, Zhong Irene Wang, PhD, Robyn M. Busch, PhD, Correspondence
Simon S. Keller, PhD, Theodor Ruber, MD, Daniel L. Drane, PhD, Travis Stoub, PhD, Ezequiel Gleichgerrcht, Dr. McDonald
Leonardo Bonilha, MD, PhD, Kyle Hasenstab, PhD,T and Carrie McDonald, PhDt camcdonald@

® health.ucsd.edu
Neurology™ 2023;101:e324-e33S. doi:10.1212/WNL.0000000000207411

Classification of Evidence

This study provides Class II evidence that in patients with drug-
resistant unilateral temporal lobe epilepsy, a convolutional
neural network algorithm derived from T1-weighted MRI can

correctly classify seizure laterality.
Neurology 2023;101:e324-e335.
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Automated Interpretation of Clinical Electroencephalograms
Using Artificial Intelligence

Jesper Tveit, PhD; Harald Aurlien, MD, PhD; Sergey Plis, PhD; Vince D. Calhoun, PhD; William O. Tatum, DO;
Donald L. Schomer, MD; Vibeke Arntsen, MD; Fieke Cox, MD, PhD; Firas Fahoum, MD; William B. Gallentine, DO;
Elena Gardella, MD, PhD; Cecil D. Hahn, MD; Aatif M. Husain, MD; Sudha Kessler, MD;

Mustafa Aykut Kural, MD, PhD; Fabio A. Nascimento, MD; Hatice Tankisi, MD, PhD; Line B. Ulvin, MD;

Richard Wennberg, MD, PhD; Sandor Beniczky, MD, PhD

To develop and validate an Al model (Standardized Computer-based Organized
Reporting of EEG—Artificial Intelligence [SCORE-AI]) with the ability to distinguish abnormal
from normal EEG recordings

to classify abnormal EEG recordings into categories relevant for clinical decision-making:
epileptiform-focal, epileptiform-generalized, nonepileptiform-focal, and nonepileptiform-diffuse

JAMA Neurol. 2023;80(8):805-812



Analyze using OUTPUT
INPUT DATA FEATURE SELECTION MAPPING FUNCTION PREDICTION
Data pipeline

30,493 recordings of Feature selection Convolutional ==e
patients referred for 3 independent test data sets: neural network model classification
EEG were included - a multicenter data set of 100 EEGs SCORE-AI
into the development evaluated by 11 experts
data set annotated a single-center data set of 9785 EEGs
by 17 experts evaluated by 14 experts
- a data set of 60 EEGs with external
reference standard (for benchmarking
with previously published Al models)

JAMA Neurol. 2023;80(8):805-812

The SCORE-AI achieved high accuracy, with an area under the receiver operating
characteristic curve between 0.89 and 0.96 for the different categories of EEG abnormalities,

and performance similar to human experts.

Benchmarking against 3 previously published Al models was limited to comparing detection of
epileptiform abnormalities. The accuracy of SCORE-AI (88.3%; 95%Cl, 79.2%-94.9%) was
significantly higher than the 3 previously published models (P < .001) and similar to human experts.



Table 1. Gwet AC1 Agreement Coefficients for the 11 Human Experts, SCORE-AI,
and the Human Expert Majority Consensus

EEG recording category

Agreement coefficient (95% Cl)

Agreement among
the human experts

Agreement between SCORE-AI and majority
consensus of human experts

Normal
Epileptiform-focal
Epileptiform-generalized
Nonepileptiform-diffuse
Nonepileptiform-focal

Exact match/multiple abnormalities

0.723 (0.649-0.796)
0.723 (0.643-0.803)
0.901 (0.854-0.949)
0.630 (0.539-0.721)
0.587 (0.499-0.674)
0.497 (0.433-0.561)°

0.903 (0.820-0.987)
0.757 (0.634-0.880)
0.928 (0.865-0.991)
0.738 (0.608-0.868)
0.775 (0.657-0.893)
0.689 (0.611-0.766)

Table 2. Average Accuracy of SCORE-AIl and of the Human Experts

With Respect to the Human Expert Majority Consensus on 100 EEGs From the Multicenter Test Data Set

Average accuracy (95% Cl)

Difference
EEG recording category SCORE-AI Human experts (P value)
Normal 95.00 (89.61-97.88) 91.36 (88.04-94.10) .09
Epileptiform-focal 84.69 (76.73-90.54) 88.4 (84.35-91.91) 12
Epileptiform-generalized 94.9 (89.41-97.83) 95.36(92.51-97.48) .34
Nonepileptiform-diffuse 84.69 (76.63-90.83) 86.09 (81.99-89.66) .33
Nonepileptiform-focal 85.71(77.86-91.41) 85.25(81.04-88.78) 47
Exact match/multiple abnormalities 65.31(54.93-73.60) 66.7 (60.56-72.41) .33

Abbreviations:

EEG, electroencephalography;
SCORE-AI, Standardized
Computer-based Organized
Reporting of EEG-Artificial
Intelligence.

a Significant difference. Statistical
comparisons were based on the
95% Cls. Significance means there
was no overlap between the
95% Cls.

Abbreviations:

EEG, electroencephalography;
SCORE-AI, Standardized
Computer-based Organized
Reporting of EEG-Artificial
Intelligence.



Figure. Receiver Operating Characteristics Curves on the Holdout Test
EEG Data Set (n = 2549)
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AUC indicates area under the curve.
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Development of Expert-Level Classification of Seizures

and Rhythmic and Periodic Patterns During EEG

Interpretation
P Neurology 2023;100:e1750-e1762

To develop and validate a computer algorithm that matches the reliability and accuracy of experts in
identifying SZs and SZ-like events, known as “ictal-interictal- injury continuum” (I11IC) patterns on EEG,
including SZs, lateralized and generalized periodic discharges (LPD, GPD), and lateralized and

generalized rhythmic delta activity (LRDA, GRDA), and in differentiating these patterns from
non-llIC patterns

Jin Jing, PhD,* Wendong Ge, PhD,* Shenda Hong, PhD, Marta Bento Fernandes, PhD, Zhen Lin, Chaogi Yang,
Sungtae An, Aaron F. Struck, MD, Aline Herlopian, MD, loannis Karakis, MD, PhD, MSc, Jonathan J. Halford, MD,
Marcus C. Ng, MD, Emily L. Johnson, MD, Brian L. Appavu, MD, Rani A. Sarkis, MD, MSc, Gamaleldin Osman, MD, MS,
Peter W. Kaplan, MBBS, FRCP, Monica B. Dhakar, MD, MS, Lakshman Arcot Jayagopal, MD, Zubeda Sheikh, MD, MS,
Olga Taraschenko, MD, PhD, Sarah Schmitt, MD, Hiba A. Haider, MD, Jennifer A. Kim, MD, PhD,

Christa B. Swisher, MD, Nicolas Gaspard, MD, PhD, Mackenzie C. Cervenka, MD, Andres A. Rodriguez Ruiz, MD,
Jong Woo Lee, MD, PhD, Mohammad Tabaeizadeh, MD, Emily J. Gilmore, MD, Kristy Nordstrom, AS,

Ji Yeoun Yoo, MD, Manisha G. Holmes, MD, Susan T. Herman, MD, Jennifer A. Williams, MB, BAO, Bch, FRCPI,

Jay Pathmanathan, MD, PhD, Fabio A. Nascimento, MD, Ziwei Fan, MS, Samaneh Nasiri, PhD,

Mouhsin M. Shafi, MD, PhD, Sydney S. Cash, MD, PhD, Daniel B. Hoch, MD, PhD, Andrew J. Cole, MD,

Eric S. Rosenthal, MD, Sahar F. Zafar, MD, Jimeng Sun, PhD,T and M. Brandon Westover, MD, PhDt



Data pipeline

Analyze using OUTPUT
INPUT DATA FEATURE SELECTION MAPPING FUNCTION PREDICTION

6,095 scalp EEGs Feature selection Deep neural network, lIIC event
from 2,711 patients Independent training and test data sets SPaRCNet . classification
with and without were generated from 50,697 EEG

lIIC events segments, independently annotated by

20 fellowship-trained neurophysiologists

Neurology 2023;100:e1750-e1762
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®

Overall, these results indicate that SPaRCNet can classify SZs and other IlIC events and
distinguish them from non-llIC events at least and human experts, and with calibration better
than most individual experts, with performance comparable with the consensus of a committee

of experts.
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e Model

X GRpa,
GRDA,

Neurology 2023;100:e1750-e1762

Two-dimensional coordinates are calculated by an algorithm
(UMAP) such that patterns assigned similar probabilities for
each class by the model are near each other in the map.
The map learned by SparCNet (model) forms a “starfish”
pattern, with the 5 IlIC patterns (SZ, LPD, GPD, LRDA, and
GRDA) emanating as arms from a central region containing

non-|lIC patterns.
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eFigure 11. The user graphical interface of “hybrid” method for expert to review model annotations.




eTable 3. Experiment to show how SPaRCNet can assist rapid EEG interpretation.

Burden
pp  Seizure  LPD  GPD  LRDA  GRDA du“ifgon Total time cost
% % % % % (hour) {minutc)
case0l 274 0 879 0 1.01 12.81 3.13
case02 316 8317 0 10.28 0 12.90 228
case03 0 0 9457 0 0 12.82 1.61
case0d 0 7603 2180 0 0 12.47 2.00
case05 0.9 0 0 9058 0 13.27 221
case06 133 5326 1104 011 025 12.75 2.14
case07 0 0 0 69.18 392 12.67 2.00
case08  16.11 0 0 2453 246 12.96 2.92
case09 0 0 0 2750 47.64 13.48 1.82
casel0 0 1128 0 13.57  17.07 12.60 2.01
casell 638 2370 0 2007 0 12.00 2.35
casel2 1446 273 0 3.63 0 12.00 2.18
caseld 3475 0 1148 0 19.22 12.00 1.72
caseld 173 9530 0 2.97 0 12.00 1.59
casels 175 4056 320 914 830 12.00 1.90




Important limitations

- SPaRCNet does not identify all EEG patterns of clinical relevance. Examples of other key
patterns include burst suppression, nonrhythmic slowing, and nonperiodic epileptiform
discharges

- SPaRCNet does not attempt to further characterize patterns. For example, it does not
localize the onset of SZs, determine the frequency of discharges within GPDs or LPDs, and
attempt to

determine the morphology of GPDs

- SPaRCNet categorizes all non-IlIC patterns as “other,” whereas for clinically deployment,
it is important to discriminate between physiologic non-llIC patterns (e.g., “normal” vs burst
suppression vs focal slowing) and to identify nonphysiologic patterns such as artifact
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Development and Validation of a Deep Learning Model for Predicting
Treatment Response in Patients With Newly Diagnosed Epilepsy

Haris Hakeem, MD; Wei Feng, MS; Zhibin Chen, PhD, CStat; Jiun Choong, BEng; Martin J. Brodie, MD, PhD;
Si-Lei Fong, MBBS; Kheng-Seang Lim, MBBS, PhD; Junhong Wu, MD; Xuefeng Wang, MD; Nicholas Lawn, MBChB;
Guanzhong Ni, MD; Xiang Gao, MSc; Mijuan Luo, MD; Ziyi Chen, MD; Zongyuan Ge, PhD; Patrick Kwan, MD, PhD

OBJECTIVE To develop and validate a deep learning model using readily available clinical
information to predict treatment success with the first ASM for individual patients.

JAMA Neurol. 2022;79(10):986-996.



INPUT DATA

Data pipeline

A total of 2404 adults
with epilepsy newly
treated at specialist
clinics in Scotland,
Malaysia, Australia, and
China between 1982 and
2020 were considered,
of whom 606 (25.2%)
were excluded due to
missing information

FEATURE SELECTION

Feature selection
16 clinical factors and
ASM information

Analyze using OUTPUT
MAPPING FUNCTION PREDICTION

Attention-based o
deep learning model
“the transformer model”

to predict the probability

of treatment success with

the first prescribed ASM

JAMA Neurol. 2022;79(10):986-996.



Table 1. Input Variables for the Machine Learning Models

Input variable

Categorization

Sex

Age at treatment
initiation
History

Febrile convulsions

Central nervous
system infection in
childhood

Significant head
trauma

Cerebral hypoxic
injury

Substance abuse
Alcohol abuse

Epilepsy in
first-degree relatives

Presence of

Cerebrovascular
disease

Intellectual disability
Psychiatric disorder

No. of pretreatment
seizures

Type of epilepsy

Electroencephalog-
raphy findings

Brain imaging findings®

Drug used

Male or female

Age groups (tertiles), y®

Yes or no

Yes or no

Yes or no
Yes or no

Yes or no
Yes or no

Yes or no

Yes or no

Yes or no
Yes or no

<5o0r>5

Focal, generalized, or unclassified

Normal, abnormal epileptiform, or abnormal
nonepileptiform

Normal, abnormal epileptogenic, or abnormal
nonepileptogenic

Carbamazepine, lamotrigine, levetiracetam,
oxcarbazepine, phenytoin, topiramate, or valproate

2 Tertiles are 18 to 29 years, older than 29 to 46 years, and older than 46 years.

b Computed tomography or magnetic resonance imaging.

JAMA Neurol. 2022;79(10):986-996.



Table 3. Comparison of Model Performance on the Test Set of the Pooled Cohort

Model parameter

Transformer

Multilayered
perceptron

Logistic
regression

Support vector
machine

XGBoost

Random forest

Mean AUROC (95% CI)
Weighted balanced accuracy

(95% Cl)

Sensitivity (95% Cl)
Specificity (95% Cl)

0.65 (0.63-0.67)
0.62 (0.60-0.64)

0.69 (0.66-0.72)
0.55 (0.52-0.58)

0.63 (0.60-0.66)
0.59 (0.57-0.61)

0.59 (0.55-0.63)
0.60 (0.57-0.63)

0.61 (0.58-0.64)
0.60 (0.58-0.62)

0.54 (0.52-0.56)
0.63 (0.60-0.66)

0.61 (0.59-0.63)
0.57 (0.55-0.59)

0.65 (0.62-0.68)
0.52 (0.49-0.55)

0.60 (0.58-0.62)
0.59(0.57-0.61)

0.54 (0.52-0.56)
0.61 (0.58-0.64)

0.58 (0.56-0.60)
0.59 (0.57-0.61)

0.47 (0.44-0.50)
0.62 (0.59-0.65)

Abbreviation: AUROC, area under the receiver operating characteristic curve.

The transformer model that was trained using the pooled cohort had an AUROC of 0.65 (95%ClI, 0.63-0.67)

and a weighted balanced accuracy of 0.62 (95%CI, 0.60-0.64) on the test set.

JAMA Neurol. 2022;79(10):986-996.



Table 4. Model Performance After Training Exclusively on the Glasgow Cohort (N = 1065)

Model parameter

Type of model?®

Transformer

Multilayered
perceptron

Logistic regression

Support vector
machine

XGBoost

Random forest

Kuala Lumpur cohort

(n=242)
Mean AUROC

Weighted balanced

accuracy
Sensitivity
Specificity

0.58 (0.57-0.59)
0.58 (0.56-0.60)

0.46 (0.44-0.48)
0.65 (0.61-0.69)

0.55 (0.53-0.57)
0.52 (0.50-0.54)

0.55 (0.51-0.59)
0.50 (0.46-0.54)

0.57 (0.55-0.59)
0.56 (0.54-0.58)

0.56 (0.52-0.60)
0.56 (0.53-0.59)

0.57 (0.55-0.59)
0.54 (0.52-0.56)

0.59(0.55-0.63)
0.50(0.47-0.53)

0.57 (0.55-0.59)
0.55 (0.53-0.57)

0.50(0.47-0.53)
0.59 (0.56-0.62)

0.46 (0.44-0.48)
0.49 (0.47-0.51)

0.38 (0.35-0.41)
0.55 (0.53-0.57)

Chongging cohort
(n=191)

CONCLUSIONS AND RELEVANCE In this cohort study, a deep learning model showed the
feasibility of personalized prediction of response to ASMs based on clinical information. With
improvement of performance, such as by incorporating genetic and imaging data, this model
may potentially assist clinicians in selecting the right drug at the first trial.

Sensitivity 0.41 (0.39-0.43) 0.50 (0.47-0.53) 0.50(0.47-0.53) 0.50(0.47-0.53) 0.59(0.56-0.62) 0.42 (0.39-0.45)

Spe

cuang] 1 N€ Model that was trained using the largest cohort only had AUROCSs ranging from 0.52 to 0.60

(";ela and a weighted balanced accuracy ranging from 0.51 to 0.62 in the external validation cohorts.
Weighted balanced 0.51 (0.49-0.53) 0.48 (0.46-0.50) 0.52 (0.50-0.54) 0.49 (0.47-0.51) 0.49 (0.47-0.52) 0.45 (0.43-0.47)
accuracy
Sensitivity 0.47 (0.44-0.50) 0.47 (0.44-0.50) 0.53 (0.50-0.56) 0.49 (0.46-0.52) 0.49 (0.46-0.52) 0.44 (0.40-0.48)
Specificity 0.55 (0.52-0.58) 0.50 (0.46-0.54) 0.50(0.47-0.53) 0.47 (0.44-0.50) 0.51 (0.49-0.53) 0.46 (0.43-0.49)

Abbreviations: AUROC, area under the receiver operating characteristic curve; XGBoost, extreme gradient boosting.

JAMA Neurol. 2022;79(10):986-996.

2 The numbers in parentheses are 95% Cls.
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Results: Our logistic regression achieved an accuracy of 72% (95% confidence in-
terval [CI]| =68%-75%, area under the curve [AUC] =.72), whereas our multilayer
perceptron and XGBoost both achieved accuracies of 71% (95% Clyy p = 67%—-74%,
AUCy;1p=.70; 95% ClxgBoost own = 08%-75%, AUCxgBoost own=-70)- There was no
significant difference in performance between our three models (all p>.4) and
they all performed better than the external XGBoost, which achieved an accuracy
of 63% (95% CI=59%-67%, AUC =.62; p; g =.005, pyrp=-01, PxGBoost own =-01) On
our data. All models showed improved performance with increasing sample size,
but limited improvements beyond our current sample. The best model perfor-
mance was achieved with data-driven feature selection.

Significance: We show that neither the deployment of complex machine learn-
ing models nor the assembly of thousands of patients alone is likely to generate
significant improvements in our ability to predict postoperative seizure freedom.
We instead propose that improved feature selection alongside collaboration, data
standardization, and model sharing is required to advance the field.
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Data pipeline

rEA:[I'gRtE SELECTION Analyze using OUTPUT
laentitie that generate output
- manually

prediction
- based on expert level knowledge

- by algorithm



1. Al needs "gold standard labels” for evaluation
» Garbage in—-> a lot of garbage out

 Example

 EEG: expert to expert agreement of seizure is low

» Electronic medical record: incomplete

* |CD codes: limited codes for epilepsy

2. Training data reflects where we can apply the
particular Al program



Data pipeline
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Hallucinations

Multilayers artificial neural networks
process data through layers of nodes,
passed through a nonlinear activation
these may in turn proceed through adc

b\

Multiple hidden layer

“Black box problem”
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tput nodes



* Advantages

— Do more work in less time

— Improve clinical decision in challenging situations
 Limitations

— Need large number of “good” data

— Machines only knows what it has seen in training

— Require supervision

— Hallucinations

Current Neurology and Neuroscience Reports 2023; 23:869-879



Al will not replace clinicians, but

clinician assisted by Al will
replace clinician without Al \

Wesly T. Kerr, MD., PhD
University of Pittsburgh

EMH: Emergency Medical Hologram (Star Trek: Voyager)
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