Management of Drug-resistant epilepsy (DRE)

Sattawut Wongwiangjunt, M.D.

Division of Neurology, Department of Medicine Siriraj Hospital, Mahidol University

Epilepsy Care

Pathway of epilepsy management

Sequential AED trials epilepsy

Park KM, et al. J of Epilepsy Research 2019;9:14-26

Treatment Response with AEDs

Old	Newer (2 nd gen)
Phenobarbital 1919	Felbamate 1993
Phenytoin 1938	Gabapentin 1993
Primidone 1954	Lamotrigine 1994
Ethosuximide 1960	Topiramate 1996
Carbamazepine 1974	Tiagabine 1997
Valproic acid 1978	Levetiracetam 1999
	Oxcarbazepine 2000
	Zonisamide 2000

Treatment Response with AEDs

Drug #	% Seizure free	
1 st mono	47.2	+13%
2 nd mono	60.2	
3 rd mono or	64 🔰	+4%
combination		

36% (~1/3) of patients have resistant to medication

Kwan & Brodie. NEJM 2000;342:314-9

3rd gen AEDs

Old	Newer (2 nd gen) Newest (3 rd g		
Phenobarbital 1919	Felbamate 1993	Pregabalin 2005	
Phenytoin 1938	Gabapentin 1993	Rufinamide 2009	
Primidone 1954	Lamotrigine 1994	Lacosamide 2009	
Ethosuximide 1960	Topiramate 1996	Vigabatrin 2009	
Carbamazepine 1974	Tiagabine 1997	Clobazam 2011	
Valproic acid 1978	Levetiracetam 1999	Ezogabine 2011	
	Oxcarbazepine 2000	Perampanel 2012	
	Zonisamide 2000	Eslicarbazepine 2014	

Pattern of treatment response

Table 1	Seizure-fre	Seizure-free rates with successive antiepileptic drug regimens						
Drug regimens	No. of patients	Seizure-free on monotherapy	Seizure-free on combination	Total no. seizure-free	% of cohort seizure-free	% Seizure-free on regimen		
First	1,098	543	0	543	49.5	49.5		
Second	398	101	45	146	13.3	36.7		
Third	168	26	15	41	3.7	24.4		
Fourth	68	6	5	11	1.0	16.2		
Fifth	32	1	3	4	0.4	12.5		
Sixth	16	1	1	2	0.2	12.5		
Seventh	9	1	1	2	0.2	22.2		
Eighth	3	0	0	0	0.0	0.0		
Ninth	2	0	0	0	0.0	0.0		

SZ freedom does not differ substantially whether an established or a new-generation AED is used.

Brodie MJ, et al. Neurology 2012;78:1548-54

Epilepsia, 51(6):1069–1077, 2010 doi: 10.1111/j.1528-1167.2009.02397.x

SPECIAL REPORT

Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies

 *¹Patrick Kwan, †Alexis Arzimanoglou, ‡Anne T. Berg, §Martin J. Brodie,
 ¶W. Allen Hauser, #²Gary Mathern, **Solomon L. Moshé, ††Emilio Perucca, ‡‡Samuel Wiebe, and §§²Jacqueline French

"Drug-resistant or Medically intractable epilepsy"

 "a failure of adequate trials of 2 tolerated, appropriately chosen and used anticonvulsant drug schedules (whether as monotherapy or in combination) to achieve sustained seizure freedom."

Kwan P, et al. Epilepsia 2010

Exclude pseudoresistance

Table 1. Some Reasons for Pseudoresistance to Antiepheptic Drug Therapy	Table 1. Some Reasons	s for Pseudoresistanc	e to Antiepileptic Dru	g Therapy.
---	-----------------------	-----------------------	------------------------	------------

Reason	Examples
Wrong diagnosis	Syncope, cardiac arrhythmia, or other condi- tions; psychogenic nonepileptic seizures
Wrong drug (or drugs)	Inappropriate for seizure type; pharmaco- kinetic or pharmacodynamic interactions
Wrong dose	Too low (overreliance on "therapeutic" blood levels); side effects preventing drug increase
Lifestyle issues	Poor compliance with medication; alcohol or drug abuse

Kwan P, et al. N Engl J Med 2011;365:919-26.

Pathway of epilepsy management

Pattern of treatment response

Rational polytherapy

1st AED fails due to lack of tolerability → 2nd mono
1st AED fails due to inefficiency

Add-on (partially effective from 1st AED)
→2nd mono (totally ineffective from 1st AED)

2nd mono should be considered in

Elder, women w/ child bearing age
Compliance challenging
Cost

Add-on: consider different MOA and co-morbidity

Rational Combination of AEDs

Recommend

- : Na-Channel blocker + GABAergic
- : Na-Channel blocker + multiple mechanism AED
- : Valproate + Lamotrigine

Not recommend

Na-Channel blocker + Na-Channel blocker
 → more neurotoxic side-effects; dizziness, diplopia and ataxia

Synergistic effect of VPA + LTG

Brodie MJ, et al. Epilepsy Res 1997;26:423–32

Synergistic combination regimen

Combination regimen	LOE	Remarks
VPA + LTG	+++	
VPA + ETX	++	In absence
LTG + TPM	+	
LCS + LEV	++	
LTG + LEV	++	
VPA + LEV	+	
VPA + clobazam + stiripentol	+++	In Dravet syndrome
VPA + LTG + BZP	++	In epileptic encephalopathy

- +++ controlled trials
- ++ case series or observational studies
- + case reports

Lee BI, et al. Epilepsy Research 2019; 106-5

Guidance for combining AEDs

- 1. Establish optimal dose of baseline agent
- 2. Add drug with multiple mechanisms
- 3. Avoid combining similar MOA
- 4. Titrate new agent slowly and carefully
- 5. Be prepared to reduce dose of original drug
- 6. Replace less effective drug if response still poor
- 7. Try range of different duo therapies
- 8. Add 3rd drug if still suboptimum

Interaction between 1st & 2nd AEDs

Expected changes in plasma concentration when new AED

Effe	ct of			♦ E	nz inc nz inł	ducer hibitor	r											
On		PB [◊]	PHT [♦]	PRM [◊]	ESM	CBZ◇	VPA□	FBM□	VGB	GBP	LTG	TPM [◊]	TGB	OXC♦	LEV	PGB	ZNS	LCS
	PB	-	↑	-	-	-	\uparrow	\uparrow	\downarrow	-	-	-	-	1	-	-	-	-
	PHT	1↓	-	î↓	-	↑↓	-	\uparrow	\downarrow	-	-	1	-	1	-	-	-	-
	PRM	\downarrow	\downarrow	-	-	\downarrow	Î	-	\downarrow	-	-	-	-	-	-	-	-	-
	ESM	\checkmark	\checkmark	\checkmark	-	\checkmark	1	-	-	-	-	-	-	-	-	-	-	-
	CBZ	\checkmark	\checkmark	\checkmark	-	-	1	\downarrow	Î	-	-	-	-	\downarrow	-	-	1	-
	VPA	\checkmark	\checkmark	\checkmark	\downarrow	\checkmark	-	\uparrow	-	-	-	\downarrow	-	-	-	-	-	-
	FBM	\checkmark	\checkmark	\checkmark	-	\checkmark	1	-	-	-	-	-	-	-	-	-	-	-
	VGB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	GBP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	LTG	\checkmark	\checkmark	\checkmark	-	\checkmark	\uparrow	-	-	-	-	-	-	\downarrow	-	-	-	-
	TPM	\checkmark	\checkmark	\checkmark	-	\checkmark	\downarrow	-	-	-	-	-	-	-	-	-	-	-
	TGB	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
	OXC	\downarrow	\downarrow	\downarrow	-	\downarrow	-	-	-	-	-	-	-	-	-	-	-	-
	LEV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PGB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ZNS	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
	LCS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	OC	\downarrow	\downarrow	\downarrow	-	\downarrow	-	\downarrow	-	-	-	\downarrow	-	\downarrow	-	-	\downarrow	-

Expert Opin. Pharmacother. (2010) 11(7)

Rationale polytherapy

Patient-oriented: To choose, To avoid

Co-morbidity	Choose	Avoid
Obesity	TPM, ZNS	VPA, PGB, GBP, PER
Migraine	TPM, VPA, ZNS, PGB, GBP	
Skin rash	LEV, GBP, PGB, TPM, VPA, PER, LCM	LTG, OXC, CBZ, PHT, PB
Neuropathic pain	PGB, GBP, CBZ, OXC, PHT	
Depression +/- Behav/Psych	LTG, CBZ, OXC, VPA, PGB	LEV, PV, PRM, TPM, ZNS, PER
Cognitive dysfn	LTG, LEV, OXC	PB, TPM, ZNS
Concomitant drugs	GBP, LEV, PGB, VPA	EI-drugs
Osteoporosis	LTG, LEV	EI-drugs, TPM, VPA, ZNS
Tremor	TPM, PER	VPA

Patient-oriented: To choose, To avoid

Co-morbidity	Choose	Avoid
Restless legs syndrome	GBP, PGB, CZP	
Renal stone		TPM, ZNS
Glaucoma		TPM
Hematological disorder		CBZ, VPA
Hyponatremia		OXC, ESL, CBZ
Hepatic disease	New AEDs	VPA
Renal disease	Old AEDs	
Cardiac arrhythmia		CBZ, LTG, LCM, PHT
Cancer	VPA, LEV, PER	EI-drugs
Heat stroke		TPM, ZNS

Epilepsy Care

Treatment Alternatives for DRE:

Type of surgical procedure

Resective surgery

Resect epileptogenic zone to eliminate or reduce SZ

Without causing deficits

Indication

DRE with SZs that interfere daily living

The progression timeline should reach > 2 years, except in patients with life-threatening SZs or in children

Epilepsies that can be treated with surgery

Contraindication

No absolute C/I

- 1. Age; in elderly should be carefully assessed
- 2. Etiology; progressive neurological disease, except Rasmussen encep
- 3. Concerning comorbidity that high risk for surgery
- 4. Concomitant psychiatric disorder: if it may compromise the result
- 5. IQ < 70 shows poorer prognosis; but not absolute C/I

Presurgical evaluation: Goal

- To localize the cortical area that generates seizures.
- → "epileptogenic zone" (EZ)
- → zone whose resection is necessary and sufficient to eliminate seizures
- •So "epileptogenic zone" cannot be certainly determined until the patient seizure free after resective surgery.

Results of epilepsy surgery

Procedure	SZ free%
Surgically treatable syndromes	
Mesial TLE -> amygdalohippocampectomy w/ or w/o ATL	70-80%
Neocortical epilepsy with single circumscribed lesion -> lesionectomy - Temporal - Extratemporal	70-80% 60-70%
Poorer outcomes	
 Neocortical epilepsy with single poorly-circumscribed lesion: Temporal Frontal Parietal Occipital 	66% 27-34% 46% 46%
Non-lesional epilepsy - Temporal - Extratemporal	60% 35%

Neurología. 2015;30 (7):439-446

Palliative surgery

 Multiple subpial transection
 Exclusively in eloquent area; Landua-Kleffner syndrome
 55% SZ free, 4% with deficit

- Corpus callosotomy
 Partial or total
 For atonic SZ
 - ■70% shows SZ reduction

Non resection techniques

- Vagus nerve stimulation
- Deep brain stimulation
- Trigeminal nerve stimulation

Non-surgical candidate

• Gamma knife radiosurgery

Vagus nerve stimulation

- Not surgical candidate

 Both focal and generalized epilepsy

 Median SZ reduction 44.6%
- 50.6% of patients SZ reduction > 50%
- 4.6% SZ free
- SZ reduction 60% in pt < 6 years old

J Neurosurg. 2011;115:1248—55

Efficacy of vagus nerve stimulation over time: Review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS >10 years

Robert E. Elliott ^{a,*}, Amr Morsi ^a, Omar Tanweer ^a, Bartosz Grobelny ^a, Eric Geller ^b, Chad Carlson ^c, Orrin Devinsky ^{b,c,d}, Werner K. Doyle ^{a,b}

Epilepsy & Behavior 20 (2011) 478–483

Deep brain stimulation

- Potentially regulate cortical/subcortical circuit
- Targeted at
 - anterior nuclei of thalamus
 - Caudate nucleus
 - Hypothalamus
 - Cerebellum

In ATN; 56% SZ reduction 54% of pt - >50% SZ reduction

Deep Brain Stimulation (DBS) for Epilepsy

Epilepsia. 2010;51:899-908

Responsive neurostimulation

Treat Seizures at Their Source

DBS vs RNS

Ketogenic diet

Ketogenic diet

- High fat -- Adequate protein -- Low carb
- Commonly used in epileptic children
- Force the brain to use "ketone" instead of glucose as a fuel.
- KD promotes synthesis of glutamine (precursor of GABA)

Table 1. Example of Typical Ketogenic Diet MealsUsing a 1100 kcal, 4:1 Ketogenic Diet (for a Typical 4-
Year-Old Child)

Breakfast

90 g ketogenic pudding 44 g cream cheese 13 g eggs 29 g heavy cream 10 g strawberries Lunch 40 g 36% heavy cream 8 g medium-chain triglyceride oil (mixed into cream) Dark meat chicken salad 20 g dark meat chicken 8 g mayonnaise 20 g avocado Dinner 35 g 36% heavy cream Ground beef and cheese 11 g ground beef 10 g cheese 8 g butter 26 g cooked broccoli 11 g butter Snack Ketogenic chocolate candy 3 g cocoa 6 g butter 6 g coconut oil

Efficacy

- 50% SZ reduction;>50% of pts
- 90% SZ reduction; 1/3 of pts
- Respond in 2 wks
- Recommendation to try 3 mo

J Child Neurol. 2009;24:979-988

Table 4. Potential Beneficial Indications for Dietary Therapy (Adapted From Ref 5)

Probable Benefit (at Least 2 Publications) Glucose transporter protein 1 (GLUT-1) deficiency Pyruvate dehydrogenase deficiency (PDHD) Myoclonic-astatic epilepsy (Doose syndrome) Tuberous sclerosis complex Rett syndrome Severe myoclonic epilepsy of infancy (Dravet syndrome) Infantile spasms Selected mitochondrial disorders Children receiving only formula (infants or enterally fed patients) Suggestion of benefit (one case report or series) Landau-Kleffner syndrome Lafora body disease Combined use with vagus nerve stimulation Combined use with zonisamide

J Child Neurol. 2009;24:979-988

Treatment Alternatives for DRE: Take home messages

Rational polyRx	Surgery	Non-Surgery
	 Resective surgery Palliative surgery Non-resective technique 	Diet - Ketogenic diet