
# Antiseizure medications (ASMs) Selection, Initiation & Discontinuation

Pasiri Sithinamsuwan Phramongkutklao Hospital

# Antiseizure medications (ASMs)

"Selection"

### Development of ASMs: Organized by generation



### How to select 1<sup>st</sup> monotherapy

- Seizure type, syndromic
- Safety profile
- Drug-drug interaction
- Co-morbidity

- Co-morbidity
   (to be discussed in another topic)
  - Elderly
  - Stroke
  - Child baring potential women
  - Renal dysfunction
  - Hepatic dysfunction
  - Overweight, migraine
  - Neuropathic pain
  - etc.

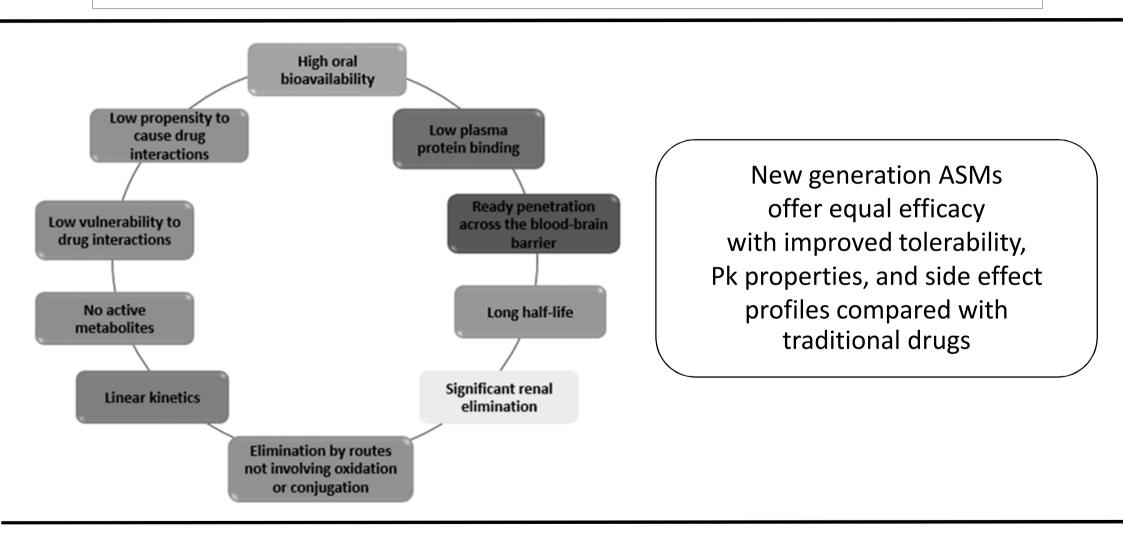
### Guidelines

|                                            | ILAE (2013) <sup>1</sup>                                                                                 |                                 | (2016) <sup>2</sup>  | AAN & AES                                                           |            |                   |                   |                     |                       |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|---------------------------------------------------------------------|------------|-------------------|-------------------|---------------------|-----------------------|
| Seizure type                               | (Level of efficacy and effectiveness evidence)                                                           | 1 <sup>st</sup> LINE            | 2 <sup>nd</sup> LINE | for new-onset epilepsy (2018) <sup>3</sup> (Level of evidence)      |            |                   |                   |                     |                       |
| Adults with partial-onset seizures         | Level A: CBZ, PHT, LEV, ZNS<br>Level B: VPA<br>Level C: GBP, LTG, OXC, PB, TPM, VGB<br>Level D: CZP, PRM |                                 | CBZ<br>CLB           | Level A: None<br>Level B: LTG<br>Level C: LEV, ZNS<br>Level D: None |            |                   |                   |                     |                       |
| Children with partial-onset seizures       | Level A: OXC<br>Level B: None<br>Level C: CBZ, PB, PHT, TPM, VPA, VGB<br>Level D: CLB, CZP, LTG, ZNS     | CBZ<br>LTG<br>LEV<br>OXC<br>VPA | LTG<br>LEV<br>OXC    | LTG<br>LEV<br>OXC                                                   | LTG<br>LEV | LTG<br>LEV<br>OXC | LTG<br>LEV<br>OXC | GBP LEV LTG OXC VPA | Insufficient evidence |
| Elderly adults with partial-onset seizures | Level A: GBP, LTG Level B: None Level C: CBZ Level D: TPM, VPA                                           | ****                            | TPM                  | Level A: None<br>Level B: LTG<br>Level C: GBP<br>Level D: None      |            |                   |                   |                     |                       |

### Efficacy of main AEDs in seizure type

| AED            | Focal simple or complex seizures | Secondarily<br>GTCS | Primarily<br>GTCS | Myoclonic jerks | Absence seizures |
|----------------|----------------------------------|---------------------|-------------------|-----------------|------------------|
| Carbamazepine  | Effective                        | Effective           | Effective         |                 |                  |
|                | Effective                        | Effective           | Effective?        | Effective?      | Effective?       |
| Clonazepam     | Effective?                       | Effective?          |                   | Effective       | Effective        |
| Ethosuximide   |                                  |                     |                   | Effective       | Effective        |
| Gabapentin     | Effective                        | Effective           |                   |                 |                  |
| Lamotrigine    | Effective                        | Effective           | Effective         |                 | Effective        |
|                | Effective                        | Effective           | Effective         | Effective       | Effective        |
| Oxcarbazepine  | Effective                        | Effective           | Effective         |                 |                  |
| Phenobarbitone | Effective                        | Effective           | Effective         | Effective       |                  |
| Phenytoin      | Effective                        | Effective           | Effective         |                 |                  |
| Tiagabine      | Effective                        | Effective           |                   |                 |                  |
|                | Effective                        | Effective           | Effective         | Effective       | Effective?       |
|                | Effective                        | Effective           | Effective         | Effective       | Effective        |
| Vigabatrin     | Effective                        | Effective           |                   |                 |                  |
|                | Effective                        | Effective           | Effective         | Effective       | Effective?       |

### Antiseizure medications: Spectrum of Action


### Narrow spectrum

- Carbamazepine
- Ethosuximide
- Gabapentin (pregabalin)
- Oxcarbazepine
- Phenobarbital
- Phenytoin
- Tiagabine
- Vigabatrin

### **Broad spectrum**

- Benzodiazepines
- Valproate
- Lamotrigine
- Levetiracetam
- Topiramate
- Zonisamide

#### Desirable pharmacokinetic properties of an antiepileptic drug



# Antiseizure medications (ASMs)

Initiation

### **ASMs** initiation

- General consideration
- When to start?
- How to start
  - Monotherapy or polytherapy
  - Dosage
- Monitoring
  - Seizure diary
  - Side effect profile
  - Blood level
  - EEG

### ASMs initiation: general consideration

- Seizure mimics?
- Provoked seizures?, Reflex epilepsies?, Precipitating causes?
- Balance risks between recurrent seizures and adverse events of ASMs
- Expectations should be modest (50%); & ASMs are not DMTs
- Goal: QoLs

### ASMs when to start: true first unprovoked seizure

- Generally <u>NO</u> treatment
  - ??? improve long-term prognosis
  - Unnecessarily expose to side effects
  - Should be deferred until a 2nd seizure occurs.
- Consider to **TREAT** if a high risk of recurrence

### First seizure, evaluate high recurrence risk

- A very high risk of recurrence
  - Examples
    - A single seizure occurring at least a month after a stroke
    - A child with a single seizure conjoined with a structural or remote symptomatic etiology and an epileptiform EEG study
    - A patient in whom diagnosis of a specific epilepsy syndrome associated with persistent threshold alteration can be made after the occurrence of a single seizure
    - A first seizure might present present as status epilepticus

### ASMs when to start: True recurrent unprovoked seizure

- Generally start Rx
- "May" not Rx if
  - Very infrequent seizures
  - Only nocturnal, mild, brief seizure
  - Some benign childhood epilepsies with self-remitting course: BECT (rolandic epilepsy)
  - Predictable precipitating events: Sleep deprivation, photosensitive epilepsy
  - No impact on the patient's psychological, social/ professional conditions
- The patient could play role in the therapeutic decision. \*\*\*

### ASMs How to start?

Monotherapy vs. Polytherapy

Administration

### Monotherapy is preferable whenever possible

- Minimized toxicity & Better tolerated
- Eliminates the risk of drug interactions
- Facilitates assessment of the effects of individual drugs
- Simple & Possibly better compliance
- Complete seizure control (high efficacy)
  - 60-70% of partial seizure
  - 70-80% of primary GTC
- Less teratogenicity
- Lower cost 

  Cost effectiveness

Shorvon SD. Brit Med J 1978.

Mattson RH. N Engl] Med 1985.

Mattson RH. N Engl J Med 1992.

Richens A. J Neurol Neurosurg Psychiatr 1994.

Heller AJ. J Neurol Neurosurg Psychiatr 1995.

Verity CM. Dev Med Child Neurol 1995.

De Silva M. Lancet 1996.

Kwan P. N Engl J Med 2000.

### Alternative monotherapy

 Avoid abrupt discontinuation of pre-existing medication to minimize the risk of withdrawal seizures.

- 2-3 months to complete withdrawal
  - Benzodiazepines, barbiturates
  - Carbamazepine, phenytoin and vigabatrin

### Polytherapy

- Advantage: in refractory seizures
  - Different mode of actions
  - Rational polytherapy concept (more efficient)
    - Combining drugs with different modes of action (Good combination)
    - VPA + ethosuximide for refractory absence seizures
    - VPA + LTG in a variety of refractory seizure types
      - Seizure reduction 62-78% with lower dosage requirement
- Disadvantages
  - A risk of adverse drug interactions
    - Interaction to other medications (cytochrome P450)
  - Higher chance for adverse events
  - Higher cost

### Concepts of polytherapy

#### **Good couple:**

- Many AEDs with multiple mechanisms, still have only a primary action
- AEDs with different mechanisms of action are more likely to interact synergistically than AEDs with similar or differing mechanisms
- VPA + LTG: can reduce dosage and frequency of LTG
- LEV or GBP + LTG: no drug interactions

#### **Bad couple:**

- AEDs with similar mechanisms may have similar side effect profiles
- An excessive amount of additive side effects
- CBZ + OXC → exacerbate hyponatremia
- BZD + BZD → excessive drowsiness

### Administration: dosage

- A loading dose
  - esp. in active seizures, or serial seizures or status epilepticus
- An adequate maintenance dosage
- Increase gradually to a target maintenance level
  - Advantage
    - Adaptation and tolerability to CNS
    - Prevent allergic skin reaction
      - CBZ, PHT, lamotrigine
    - Some patients require at dose below the initial target maintenance dosage.

### Example of suggested initial & maintenance dosages & frequency of administration

| Drug          | Initial dose<br>(mg/d) | Maintenance<br>dose (mg/d) | Frequency<br>(/day) | Drug              | Initial dose<br>(mg/d) | Maintenance<br>dose (mg/d) | Freq.<br>(/day)  |
|---------------|------------------------|----------------------------|---------------------|-------------------|------------------------|----------------------------|------------------|
| CBZ           | 400-600                | 400-1,600                  | 2-3<br>2 for CR     | Phenobarbita<br>I | 50-100                 | 50-200                     | 1                |
| Clobazam      | 10                     | 10-30                      | 1 or 2              | Phenytoin         | 200-300                | 200-400                    | 1-2              |
| Ethosuximide  | 500-750                | 500-1,500                  | 2-3                 | Primidone         | 500-750                | 500-1,500                  | 2-3              |
| Felbamate     | 1,800-2,400            | 1,800-3,600                | 3-4                 | Tiagabine         | 15<br>30*              | 15-30<br>30-50*            | 2-4              |
| Gabapentin    | 900-1,800              | 900-3,600                  | 2-3                 | Topiramate        | 100                    | 100-400                    | 2                |
| Lamotrigine   | 50-100<br>200-300*     | 50-200<br>200-500 *        | 2<br>(1 if VPA)     | Valproic acid     | 500-1,000              | 500-2,500                  | 2-3<br>1-2 in CR |
| Levetiracetam | 1,000-2,000            | 1,000-3,000                | 2                   | Vigabatrin        | 1,000                  | 1,000-3,000                | 1-2              |
| Oxcarbazepine | 600-900                | 600-3,000                  | 2-3                 | Zonisamide        | 200                    | 200-500                    | 2                |

<sup>\*</sup> With enzyme inducers

### Initial target maintenance dosage

- In general
  - The lowest daily dosage to produce seizure control
- Condition with higher dosage and plasma drug levels (the prognosis negatively)
  - High seizure frequency before Rx
  - Symptomatic epilepsy
  - Partial seizures
  - Multiple seizure types
  - Associated neurological handicaps
  - An unfavorable response to previous AED
  - Severe psychological or social impact on the individual's life

### Administration: Concepts of frequency of ASMs use

- 1-2 doses a day → Less likely to obstruct daily routines: a better compliance
- A slow elimination (PB): once daily at bedtime
- PHT: 1. adult: daily, 2. children: more frequent, 3. generic 2-3 time/day, 4. original 1 time/day
- Lamotrigine
  - OD: monotherapy, or on with VPA
  - · Bid: on with other enzyme-inducing AED
- VPA. sometimes OK for OD
  - Except in women with childbearing potential → bid
    - Teratogenicity increases by excessive fluctuations in plasma drug levels

### Dosage adjustments on patients not responding to the target dosage

- According to pharmacokinetic principles
- $5 \times T1/2 = \text{steady state}$
- Short half-life → steady state = days: VPA, CBZ (instant release)
- Long half-life → weeks: PHT, PB
- If seizures continues even in steady state, increase dosage until maximum tolerated dose

### **Formulation**

- Age>5 years: tablets or capsules <u>NOT</u> syrup
  - More precise dosing
  - Syrup
    - Tooth damaging from sucrose
    - Excessively rapid absorption
- Enteric-coated tablets
  - Absorbed at intestine, so delayed absorption by ingestion
- Sustained release such as CBZ, VPA, PHT
- Generic drugs
  - ? Identical, ?equivalent bioavailability
  - Drug level should be assessed.

### Adjusted medication

- When seizures continue at maximally tolerated dosage
  - Review Dx
    - The cause of inadequate response
      - Poor compliance, sleep deprivation, alcohol abuser, etc.
  - A second monotherapy
    - Better tolerate than combination Rx
  - A trial of combination therapy
    - If 2nd, 3rd monotherapy: failure
  - Considering the feasibility of epileptic surgery

### Concepts of treatment

- Start low, go slow: dose dependent properties
- Final dosage, individualized: minimally effective, maximally tolerated
- In urgency/emergency case: fast titrate, intravenous formulation
- NG feeding: liquid formulation
- Fail 1<sup>st</sup> Mono (1/3 failed)
  - $\rightarrow$  2<sup>nd</sup> mono  $\rightarrow$  polytherapy
  - → rational polytherapy

### Outcome assessment

- Complete seizure control
  - An absence of seizures for at least one year
- Definition for seizure freedom by ILAE 2010
  - The absence of seizures for at least the previous year "or"
  - For 3 times the longest pretreatment interval between seizures (rule of 3)
  - whichever was greater

### How to evaluate

• Clinical assessment (seizure diary with simple codes)

Adverse events

• Blood level: routinely checked?

Repeat EEG

### Example of adverse event

| Drug        | Dose dependent S/E                                                                                                             | Idiosyncrasy                                                                                                                | Drug      | Dose dependent S/E                                                   | Idiosyncrasy                                                                                    |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| CBZ         | Diplopia Dizziness, nausea Headache Drowsiness Neutropenia Hyponatremia                                                        | Morbilliform rash Agranulocytosis Aplastic anemia Hepatotoxic effects SJS Teratogenicity                                    | Primidone | Fatigue Listlessness Depression Psychosis Decreased libido Impotence | Rash Agranulocytosis Thrombocytopenia Lupus-like syndrome teratogenicity                        |
| Phenytoin   | Nystagmus Ataxia Nausea, vomiting Gum hypertrophy Depression, drowsiness Paradoxical increase in seizures Megaloblastic anemis | Acne, coarse facies Hirsutism Blood dyscrasias Lupus-like syn Rash, SJS Dupuytren's cont Hepatotoxic effects Teratogenicity | Ethosux.  | Nausea, vomiting Anorexia Agitation Drowsiness Headache Lethargy     | Rash Erythema multiforme SJS Lupus-like syndrome Agranulocytosis Aplastic anemia                |
| Valproic a. | Tremor Weight gain Dyspepsia Nausea, vomiting Alopecia Peripheral edema                                                        | Acute pancreatitis Hepatotoxic effects Thrombocytopenia Encephalopathy Teratogenicity                                       | Phenobar. | Fatigue Listlessness Depression Insomnia, irritability (children)    | Maculopapular rash Exfoliation Toxic epidermal necrolysis Hepatotoxic effects Arthtitic changes |
| Clonazepam  | Fatigue Sedation, drowsiness Dizziness Aggression (children)                                                                   | Rash<br>thrombocytopenia                                                                                                    |           |                                                                      | Dupuytren's contracture teratogenicity                                                          |

### Potential adverse event

- Monitors also for potential side effect
- Informs patients or family about AE and early signs of serious toxicity
- CBC, blood chemistry
  - Before Rx, once in between and whenever another Rx is added.
  - BM suppression
  - Hepato-toxicity
- Visual field defect
  - Vigabatrin

### Blood level: routinely checked?

- Pharmacokinetics: inter-individual variation
- The primary aim of Rx: A patient's clinical response **NOT** a lab value
- Dose adjustments should be based primarily on clinical response.
  - Seizure free at suboptimal concentrations
  - Tolerability above the upper limit of the optimal range

### When should drug concentrations be measured?

| 1. Failure to achieve an adequate therapeutic response despite an apparently adequate dosage |                                                                                                                                 |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2. Conditions associated with pharmacokinetic changes                                        | <ul> <li>Pediatric, pregnancy, old age, Liver, kidney and GI tract diseases</li> <li>Drug binding to plasma proteins</li> </ul> |  |  |  |  |
| 3. ? Drug toxicity                                                                           | <ul><li>Exacerbation of seizure frequency</li><li>In-coordination or mental symptoms</li></ul>                                  |  |  |  |  |
| 4. To minimize the difficulties in dosage adjustments, particularly with phenytoin           |                                                                                                                                 |  |  |  |  |
| 5. Multiple drug Rx                                                                          | To identify & to minimize adverse drug interactions                                                                             |  |  |  |  |
| 6. ? Poor compliance                                                                         | <ul> <li>Unusually low and variable concentrations</li> <li>Increase level following supervision of drug intake</li> </ul>      |  |  |  |  |

### When should blood samples be taken?

- At steady-state
  - At least 5 x T1/2 since the last dose change
- Long T1/2 drug such as phenobarbital
  - Little daily fluctuation in plasma concentration
    - No meaning of the exact time of sampling
- Other medications
  - Preferable to collect the morning before the first daily dose
    - "Trough level"
- Short T1/2 such as VPA, CBZ
  - Another <u>"peak level"</u> to estimate

    - The degree of fluctuation
      Potential causes of intermittent side-effects

### Example: Half-life and steady state: in adults

| Drug          | T ½   | SDS  | Drug          | T 1/2  | SDS  |
|---------------|-------|------|---------------|--------|------|
|               | (hr)  | (d)  |               | (hr)   | (d)  |
| Clobazam      | 10-30 | 2-6  | Phenobarbital | 50-170 | 8-30 |
| Clonazepam    | 20-60 | 2-10 | Phenytoin     | 10-80  | 3-15 |
| Carbamazepine | 15-25 | 2-7  | Primidone     | 10-20  | 2-4  |
| Ethosuximide  | 40-60 | 4-10 | Tiagabine     | 4-13   | 2    |
| Felbamate     | 14-23 | 2-4  | Topiramate    | 20-30  | 2-5  |
| Gabapentin    | 5-7   | 2    | Valproic acid | 12-18  | 2-4  |
| Lamotrigine   | 15-35 | 2-6  | Vigabatrin    | 5-8    | 2    |
| Levetiracetam | 6-8   | 2    | Zonisamide    | 50-70  | 5-12 |
| Oxcarbazepine | 8-15  | 2-4  |               |        |      |

NB: T ½ in patients not talking enzyme inducers

### The concept of "Therapeutic range"

- The ranges of the plasma concentration at which most patient respond
- Clinical variation from therapeutic level
  - Pharmacokinetics: inter-individual variation
  - Type of seizures variable response to Rx
  - Adaptation (Tolerance): esp. benzodiazepine & barbiturate
  - The degree of drug binding to plasma proteins
  - Drug interaction with concomitant medications
- Toxicity even in therapeutic level
  - Protein binding
  - Active metabolites
  - Additive AE from concomitant medications

### Optimal range

| Drug          | μg/mL  | µmol/L  | Relationship b/w level & effect                                                     |
|---------------|--------|---------|-------------------------------------------------------------------------------------|
| Phenytoin     | 10-20  | 40-80   | Relatively consistent                                                               |
| Carbamazepine | 4-11   | 17-46   | Relatively good                                                                     |
| Ethosuximide  | 40-100 | 284-710 | Relatively good                                                                     |
| Phenobarbital | 10-40  | 43-172  | Tolerance                                                                           |
| Primidone     | 4-12   | 18-55   | Measure the levels of metabolically derived phenobarbital (not unchanged primidone) |
| Valproic acid | 50-100 | 350-700 | Variable response & little value                                                    |
| Vigabatrin    | N/A    | N/A     | No relationship                                                                     |
| Zonisamide    | 7-30   | 33-140  | N/A                                                                                 |

### Monitoring total or unbound drug concentrations?

- Pharmacologic effects
  - Only the free, non-protein bound fraction
- Routine measurement
  - Total concentration: may mislead the clinicians
- Highly protein-bound drugs: PHT, VPA
  - Hypoalbuminemia: increased un-bound fraction
    - Found in neonatal age, advanced pregnancy, old age, chronic liver disease, nephrotic syndrome
  - Uremia: accumulation of endogenous displacing agents
  - Drug interaction: VPA displacing PHT molecules from protein binding sites

### Repeat EEG?

- EEG
  - Diagnostic & prognostic considerations
  - Guide for medication
- Generally of little or no value in assessing therapeutic response
  - Some cases with marked clinical improvement
    - EEG: unchanged or even deteriorates EEG
- Useful to repeat in treatment of status epilepticus
- Paroxysmal EEG activity may predict of the risk of seizure recurrence when treatment is discontinued.

### Prognostic groups

- 1) Spontaneous remission (20-30%)
  - Benign epilepsy of childhood with centrotemporal spikes (BECT)
  - Childhood absence epilepsy (CAE)
- 2) Remission on AEDs (20-30%)
  - Most focal epilepsy
  - Juvenile myoclonic epilepsy (JME)\*\*
- 3) Persistent seizure with AEDs (30-40%)
  - Refractory patients
    - An increase risk of psychosocial and medical morbidities and mortality

# Antiseizure medications (ASMs)

Discontinuation

-- debate -

On ASMs → may still have seizures, risk of AEs, teratogenic Not on ASMs → may be seizure free

Decision – individualized

### **Prognosis**

• A study, 2,200 patients: 1-year remission rates after drug treatment

| Idiopathic generalized epilepsy                        | 82% |
|--------------------------------------------------------|-----|
| Cryptogenic partial epilepsy                           | 45% |
| Symptomatic partial epilepsy                           | 35% |
| Partial epilepsy associated with hippocampal sclerosis | 11% |
| Hippocampal sclerosis & another lesion                 | 3%  |

### How long to treat with AED? & Can AED be discontinued?

- Many epilepsies: spontaneous remission
- Relapse rate in 2 years : range 0-90%, average 30%
- Predictors
  - Increasing age
  - Symptomatic epilepsy, an abnormal EEG
  - A longer duration of active disease prior to seizure control
- Relapse: epilepsy syndrome

| BECTs (Rolandic epilepsy)                   | very rare             |
|---------------------------------------------|-----------------------|
| Childhood absence epilepsy                  | rare (5-25%)          |
| Cryptogenic or symptomatic partial epilepsy | intermediate (25-75%) |
| Juvenile myoclonic epilepsy                 | high (85-95%)         |

### Consider

- Social aspects
  - Job
  - Adverse effects
  - Drug interactions
  - Driving license
  - Leisure activities
  - Emotional and personal factors
  - Patients' decision \*\*\*

### How to discontinue medication?

- Avoid stopping antiepileptic drugs abruptly
  - Withdrawal seizures: even status epilepticus
  - Gradual discontinuation of medications
- Discuss with patient & family
  - The probability of relapse
  - Side-effects of treatment
  - Patient's attitude to continuation of treatment
  - Legal implications with driving regulations

Berg AT. Neurology 1994. Beghi E. Drugs 1995.

### Summary

- The most important is to diagnose correctly
- Plans of initial management both pharmacological and non-pharmacological approaches are essential
- Evaluation and prompt treatments including using either standard or new AEDs should be done on a case-by-case basis
- Identify refractory epilepsy case and consider refer to Epilepsy centers at the proper time

### Thank you