DRUG-RESISTANT EPILEPSY

NEUROMODULATION FOR

Major General Siraruj Sakoolnamarka, MD., FRCNST

Epilepsy surgery treatment algorithm

SCOPE

What is Neuromodulation?

Classification and History of Neuromodulation for Epilepsy

Common types of Neuromodulation used in DRE

- \circ Indication,
- Mechanism of actions,
- \circ Evidence related to the outcome,
- \circ Adverse effects

Conclusion

WHAT IS NEUROMODULATION?

Neuromodulation is technology

that acts directly upon neurological system.

It is the alteration of nervous system activities by delivering electrical or pharmaceutical agents directly to a target area.

Krames, Peckham, and Rezai (eds) Neuromodulation v.1-2, (2009), 2nd ed (2018)

HOW NEUROMODULATION WORKS

Neuromodulation works

by either actively stimulating nervous areas to produce a natural biological response /

by applying targeted pharmaceutical agents in tiny doses directly to site of action.

Krames, Peckham, and Rezai (eds) Neuromodulation v.1-2, (2009), 2nd ed (2018)

Electric ray, Torpedo sp.

Use of electrical torpedo fish

In treatment of gout

In treatment of headache

Perdikis P, S Afr J Surg 1977;15:81-86

Classification of Neuromodulation device for Epilepsy

Neuromodulation for DRE

Indications

Medically refractory focal onset seizures/ major depression. Commonly used for generalized seizures as well.

The first neuromodulator device approved for use by USFDA since 1997

An Invasive, Open-loop/Closed-loop device.

Initially for use in patient with focal onset seizure with DRE > 12 Y

In 2017, approved for use in children > 4 Y

VNS: MECHANISM

Hypothesis:

A decrease in the brain venous hyperemia and, hence seizure abortion.

Fan JJ, et al. CNS Neurosci Ther 2019;25:1222-8

Desynchronization of sz network activity, modulate NT release with increase GABA levels & decreased glutamate levels.

Hammond EJ, et al. Brain Res 1992;583:300-3 Zabara J. Epilepsia 1992;33:1005-12

A Role in Sz modulation

VNS: EFFICACY

	Approval	Indication	Clinical Trial Outcomes
Open-lo	оор		
VNS	1997	Adults and adolescents older than 12 y of age with partial-onset seizures that are refractory to antiepileptic medications	E01, E02, E03, E04, E05 454 participants 35% reduction at 1 y 37% responder rate at 1 y 44% reduction at 2 y 43% responder rate at 2 y
	2017	Extended to use in patients 4 y of age and older	E3, E4, E5, E6, postapproval study (Japan) 117 participants 24.7% reduction at 1 y 35% responder rate at 1 y

Morris GL 3rd, et al. Neurology **1999**;53:**1731**-5

VNS: QoL

VNS with best medical therapy had significant improvement in healthrelated QoL VS medical alone group. Ryvlin P, et al. Epilepsia 2014;55:893-900 Tsai JD, et al. Epilepsy Behav 2016;56:95-8

(Overall improvement in attention, cognitive ability, memory, creativity and decision-making)

Improvement in quality-adjusted life years of 5.96 years (age 1-11 Y) and4.82 years (age 12-17 Y)Helmers SL, et al Eur J Paediatr Neurol 2012;16:449-58

Reduction in total health care cost (by 3000 USD/Pt/Y) and decrease ER visits, but not having a significant reduction in Sz.

Marras CE, et al. Int J Environ Res Public Health 2020;17:6150 Ben-Meachem E, et al. Neurology 2002;59 (6 Suppl4):S44-7

VNS: ADVERSE EFFECTS

VNS implantation is relatively safe operation.

Most common side effects

Hoarseness of voice, coughing & laryngeal paresthesia about 60% but this is often reduced with habituation/adjustment in stimulation parameters.

By 2 years, hoarseness 19.8%

Elliot RE, et al. Epilepsy Behav 2011;20(3):478-83

Infections 3-6%, Vocal cord paralysis 1%, Lead damage 3%, Bradycardia

Handforth A, et al. Neurology 1998;51:48-55 Wheless JW, et al. Epilepsy Behav 2018;88S:2-10 Morris GL 3rd Mueller VM. Neurology 1999;53:1731-5 Englot DJ, et al. J Neurosurg 2011; 115:1248-55

VNS: RECENT ADVANCES

Transcutaneous VNS (tVNS) as non-invasive device

Closed-loop VNS (2015), detects tachycardia due to SZ & automatic stimulus

Biomarkers of VNS

Transcutaneous VNS (tVNS)

KEY EVENTS IN THE HISTORY OF DEEP BRAIN STIMULATION

DBS

Indications Medically refractory focal onset seizures

Electrodes are directly implanted into deep brain nucleus

Currently three targets in epilepsy:

Anterior thalamus (ANT), Centromedian thalamus (CMT) and Hippocampus (HIP)

An Invasive, open-loop device.

Direct targeting of the anteroventral in Anterior Thalamus for DRE (ANT-DBS) approved by EUFDA since 2010, followed by USFDA in 2018

DBS: MECHANISM

Anterior nucleus of Thalamus is well connected to the limbic circuit and sends projections to various cortical structures eg. Orbito-frontal, cingulate & mesial frontal cortices.

High-frequency stimulation prevents seizure activities in rats.

Mirski MA, et al. Epilepsy Res 1997;28:89-100

Chronic stimulation was efficacious in seizure control in human.

Cooper IS, Upton AR. Clin Neurophysiol Suppl 1978:349-54 Upton AR, et al. Int J Neurol 1985;19-20:223-30

Stimulation induced changes in the ion channels, synaptic levels of NT and glial changes leading to overall network modulation.

McIntyre CC, et al. Clin Neurophysiol 2004;115:1239-48 Zumsteg D, et al.Clini Neurophysiol 2006; 117:2272-8 Witcher MR, Ellis TL. Front Comput Neurosci 2012;6:61

DBS: EFFICACY

	Approval	Indication	Clinical Trial Outcomes
Open-lo	ор		
DBS	2017	Adults with partial-onset seizures that	SANTÉ
		are refractory to antiepileptic	157 participants
		medications	41% reduction at 1 y
			43% responder rate at 1 y
			69% reduction at 5 y
			68% responder rate at 5 y

Salanova V, et al. Neurology 2015;84:1017-25 Yan H, et al. J Neurosurg Pediatr 2018;23:274-84

DBS: QoL

Significant improvement in QoL at long-term follow-up.

Initially reported about depression 13%, memory decline 13%

Salanova V, et al. Neurology 2015;84:1017-25 Fisher R, et al. Epilepsia 2010;51:899-908

Long-term studies (7Y follow-up),

Improvement in attention & executive function

no significant decline memory and depression.

Thomas GP, Jobst BC. Med Devices (Auckl) 2015;8:405-11

DBS: OTHER TARGETS

CMT: Be considered as a treatment option in refractory generalized epilepsy

80% seizure reduction in Lennox Gastaut syndrome with severe generalized epilepsy and >70% sz reduction (10/13 pts) at 18 months

Osorio I, et al. Epilepsia 2015;56(10): e156-60

HIP: Be considered when bilateral onset mTLE/ high risk of neurocognitive deficit is expected after resection

Small numbers of pts in clinical studies, showing >50% Sz reduction.

Velasco AL, et al.Epilepsia 2007;48:1895-1903 Tellez-Zenteno JF, et al. Neurology 2006; 66:1490-94 Velasco AL, et al.Epilepsia 2000;41:158-69

Cerebellar: Inconsistent outcomes

Fountas KN, et al. Neurosurg Focus 2010;29: E8

DBS: ADVERSE EFFECT

Common AE Implant site pain 23.6%, Paresthesia 22.7%,

Serious AE Implant site infection 10%, Lead mis targeting 8.2%

Hemorrhage 2.4%

Salanova V, et al. Neurology 2015;84:1017-25 Voges J, et al. J Neurol Neurosurg Psychiatry 2006;77:868-72

Timeline of technology development for DBS

DBS:RECENT ADVANCE

Indications

Medically refractory focal unresectable onset seizures or focal onset with up to two identified seizure foci.

An invasive, closed-loop device.

A set of recording ECoGs with electrical stimulus to the Sz focus.

USFDA approved since 2013

Safety & efficacy is supported by Class I evidence

RNS

Image Courtesy NeuroPace, Inc. Caption: Illustration of a closed-loop, responsive neurostimulation system. The RNS[®] System is the only medical device designed to monitor and respond to your brain's electrical activity to prevent seizures before they start.

Nor	mal Brain Activity		Unu	sual Activity	Freatment	Brainwaves Norma	lize
1 1 1							
	1 sec	2 sec	3 sec	5 sec		6 sec	7 sec

Monitors your brain activity 24 hours a day

Recognizes & Responds to your specific seizure patterns

Records with a small electrical pulse to prevent a seizure from occuring

RNS: MECHANISM

DIRECT EFFECTS

Disrupting ictal evolution & returning Sz network to it baseline interictal state

Transient stimulation-induced activation of local postsynaptic potentials.

Upregulation of local GABA activity

Depletion of NT has detected at synaptic terminals causing depression of electrical foci.

Reduced the excitability of underlying epileptogenic neuronal populations.

Thomas GP, Jobst BC. Med Devices (Auckl) 2015;8:405-11 Lundstrom BN, et al. JAMA Neurol 2016;73(11) :1370 Kokkinos V, et al. JAMA Neurol 2019;76(7): 800-8

INDIRECT EFFECTS

Stimulation acting as a desynchronizer

Isolating excitatory neuronal pools

Failures of modulated epileptogenic network to generate sufficient synchronization

Long-term effects have been postulated to be mediated via induced changes in gene expression with chronic stimulation.

Bragin A, et al. Epilepsia 2000;41(s6):S144-52 Schevon CA, et al. J Clin Neurophysiol 2008; 25(6):321-30

RNS: CLINICAL TRIALS

 Pivotal trail, double blind RCT 191 patients implanted RNS

 Duration
 Sz reduction

 Treatment group, n=97
 Control group, n=94

 12-wks
 37.9%
 17.3%

 No significant difference was observed in the adverse effects and favorable outcome was seen in both groups

 Morrell MJ, Group RNSSIES. Neurology 2011; 77:1295-304

 1 Year
 44%

 2 Year
 53%

Heck CN, et al. Epilepsia 2014;55:432-41

RNS: CLINICAL TRIALS

A 9-year F/U of patients w focal epilepsy (n=230), multicenter open label trials of RNS 75%Sz reduction, 73% responder rate, significantly reduced SUDEP rate Nair DR, et al. Neurology 2020; 95:e1244-56 An average 6-year F/U, in pt with pt with partial Sz (n=112) in eloquent & neocortical areas 70% Sz reduction in pt with frontal & parietal foci 58% Sz reduction in pt with temporal neocortical foci 51% Sz reduction in pt with multi-lobar foci Jobst BC, et al. Epilepsia 2017;58 (6):1005-14 An average 6-year F/U, in pt with MTLE (n=111) 72% bilateral and 28% unilateral 70% Sz reduction (29% had one Sz free period of > 6 mo, 15% Sz free > 1Y) Most frequent serious AE was soft tissue implant-site infection 0.3/implant year

RNS: EFFICACY

Established seizure control that improves over time

Median % Seizure Reduction

- Seizure-Free Intervals
- ≥ 3 months: 37%
- ≥ 6 months: 23%
- ≥ 1 year: 13%

Heck CN, et al. *Epilepsia*, 2014. Bergey GK, et al. *Neurology*, 2015.

RNS: Qol

Morrell MJ, Group RNSSiES. Neurology 2011; 77:1295-304

RNS: ADVERSE EFFECTS

Common AE: Infected related 40% of all complications

Lead breakage 12%

Giles TX, et al. Neuromodulation 2020

Overall risk of infection 4.1%

Rate of hemorrhage2.7%Jobst BC, et al. Epilepsia 2017;58 (6):1005-14
Geller EB, et al. Epilepsia 2017;58(6): 994-1004

Medically refractory focal onset seizures and depression. As with VNS, it may be helpful for generalized seizures.

2012: European approval for use in patient with DRE

Indications

2015: eTNS received Humanitarian Use Device designation from FDA for Lennox-Gastaut Syndrome

2019: USFDA approval for pediatric attention deficit/hyperactivity disorder

Comprised of an external pulse generators with disposable bipolar transcutaneous electrodes

EXTERNAL TNS: MECHANISM

EXTERNAL TNS: EFFICACY

Approval Indication			Clinical Trial Outcomes			
Open	Open-loop					
TNS	2015 ^a	Adults with partial-onset seizures that are refractory to antiepileptic medications	eTNS for DRE 50 participants 16.1% reduction at 18 wk 40.5% responder rate at 18 wk			
		Approved for children 9 years and older in Europe	27.4% reduction at 6 months 36.8% of 50% responder rate at 12 months Soss J, et al. Epilepsy Behav 2015;42:44-7 Slaght Sj, Nashef L. Seizure 2017;52:60-2			

EXTERNAL TNS: ADVERSE EFFECTS

Common AE: Skin irritation 14%, headache 4%, and anxiety 4%

Serious AE: None

27.4% reduction at 6 months36.8% of 50% responder rate at 12 months

Soss J, et al. Epilepsy Behav 2015;42:44-7 Slaght Sj, Nashef L. Seizure 2017;52:60-2

DEFAULT STIMULATION SETTING

	Default Stimulation Settings				
Device	Output	Frequency (Hz)	Pulse Width (μs)	On Time (s)	Off Time (min)
VNS	1.0 mA	30	500	30	5
DBS	5.0 V	145	90	60	5
TNS	<10.0 mA	120	<250	_	_
RNS	1.0 mA	200	160		_

Sisterson ND, Kokkinos V. Neurosurg Clin N Am 2020;31:459-70

OTHERS

Transcranial Stimulation:

Transcranial magnetic stimulation (TMS), Transcranial Direct Current stimulation (tDCS), Transcranial alternating Current Stimulation (tACS)

Glossopharyngeal Nerve Stimulation

Focal Delivery of AED therapy

Neuronal Grafting & Tissue Transplant

Gene therapy

Focal Cortical Cooling

Summary of Focal Drug Delivery Studies

Author (Date)	Anticonvulsant Agents	Epilepsy Model
Uemura (1991) ²⁶⁵	Taurine and valytaurine	Amygdaloid electrically kindled seizure in rats
Smith (1993) ²⁶⁶	Lidocaine hydrochloride	Prepiriform cortex GABA antagonist bicuculline microinjection in rats
Wada (1993) ²⁶⁷	Serotonin (5-HT) 1 A agonist	Hippocampal electrical kindling in cats
Eder (1997) ²⁶³	Diazepam	Hippocampal, motor cortex bicuculline kindled seizure in rats
Eder (1997) ²⁶⁴	Diazepam	Hippocampal cobalt injection/systemic pilocarpine kindling in rats
Attwell (1998) ²⁶⁸	Group II metabotropic glutamate receptor agonist	Amygdaloid electrically kindled seizure in rats
Croucher (1988) ²⁶⁹	Excitatory amino acid antagonists	Prepyriform cortex electrical kindling
Kubek (1998) ²⁷⁰	Polymer-thyrotropin-releasing hormone	Amygdaloid electrically kindled seizure in rats
Boison (1999) ²⁷¹	Adenosine	Hippocampal electrical kindling
Tamargo (2002) ²⁷²	Phenytoin	Cobalt-induced seizure
Costantin (2005) ²⁷⁹	Botulinum neurotoxin	Kainic acid kindling
Wang (2007) ²⁸⁰	Omega-Conotoxin MVIIA (N-type calcium channel antagonists)	Amygdaloid electrically kindled seizure in rats
Gasior (2007) ²⁸¹	Omega-Conotoxin MVIIA	Amygdaloid electrically kindled seizure in rats
Ludvig (2006) ²⁸²	Pentobarbital	Acetylcholine-induced seizure
Ludvig (2009) ²⁸³	Muscimol	Acetylcholine-induced seizure

CONCLUSION

Neuromodulation is an option for DRE not resectable / not responsive to surgical resection.

It is effective and relatively safe treatment.

However, the complete seizure freedom is rarely achieved.

The choice of device depends on the type of epilepsy, age of patient, device availability and affordability

NOX MAN N NAME NO VICE XP XP THANK YOU FOR YOUR ATTENTION