

Comprehensive Management of Post Stroke Seizure and Epilepsy

Kanokwan Boonyapisit, M.D. Department of Medicine Siriraj Hospital

DEFINITION

- Acute symptomatic seizures
- Late poststroke seizure
- Poststroke epilepsy

SPECIAL REPORT

Recommendation for a definition of acute symptomatic seizure

*^IEttore Beghi, †Arturo Carpio, ‡Lars Forsgren, §Dale C. Hesdorffer, ¶Kristina Malmgren, #Josemir W. Sander, **Torbjorn Tomson, and §W. Allen Hauser

*Mario Negri Institute, Milan, Italy; †Department of Neurology, University of Cuenca, Cuenca, Ecuador; Department of Neurology, Umea University, Umea, Sweden; Spepartment of Epidemiology and Department of Neurology, Columbia University, New York, New York, U.S.A.; ¶Goteborg University, Goteborg, Sweden; #UCL Institute of Neurology, Queen Square, London, United Kingdom and SEIN – Epilepsy Institute of the Netherlands Foundation, Heemstede, The Netherlands; and **Karolinska Institutet, Stockholm, Sweden

SUMMARY

a diagnosis of acute symptomatic seizure should be manda in the museumes of sevene mastabalis devenes ments

Purpos seizure "Acute symptomatic seizure is defined as a clinical al or ation teria u seizure occurring at the time of a systemic insult or in genic seizure Method close temporal association with a documented brain : be demiol ately Results insult. Suggestions are made to define acute symptomatic comical sei: seizures as those events occurring within 1 week of t the close 1 ıderstroke, traumatic brain injury, anoxic encephalopathy, or insult. 🗄 with seizure vhich stroke, intracranial surgery" tomintracr netahematoma; at the presence of an active central nervous bolic dysfunction still require a clear identification.

system (CNS) infection; or during an active phase of multiple sclerosis or other autoimmune diseases. In additiKEY WORDS: Enidemiology. Definition. Acute symp-

Beghi E, et al. Epilepsia, 51(4):671–675, 2010

- Acute symptomatic seizures
- : seizures occur within one week after acute stroke
- Late poststroke seizure
- : unprovoked seizure that occurs > 1 week after acute stroke
- Poststroke epilepsy

A practical clinical definition of epilepsy

*Robert S. Fisher, †Carlos Acevedo, ‡Alexis Arzimanoglou, §Alicia Bogacz, ¶J. Helen Cross,
 #Christian E. Elger, **Jerome Engel Jr, ††Lars Forsgren, ‡‡Jacqueline A. French, §§Mike
 Glynn, ¶¶Dale C. Hesdorffer, ##B.I. Lee, ***Gary W. Mathern, †††Solomon L. Moshé,
 ‡‡‡Emilio Perucca, §§§Ingrid E. Scheffer, ¶¶¶Torbjörn Tomson, ###Masako Watanabe, and
 ****Samuel Wiebe

Epilepsia, 55(4):475–482, 2014 doi: 10.1111/epi.12550

Robert S. Fisher Department of Neurology & Neurological Sciences, Stanford University School of Medicine

SUMMARY

Epilepsy was defined conceptually in 2005 as a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures. This definition is usually practically applied as having two unprovoked seizures >24 h apart. The International League Against Epilepsy (ILAE) accepted recommendations of a task force altering the practical definition for special circumstances that do not meet the two unprovoked seizures criteria. The task force proposed that epilepsy be considered to be a disease of the brain defined by any of the following conditions: (1) At least two unprovoked (or reflex) seizures occurring >24 h apart; (2) one unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years; (3) diagnosis of an epilepsy syndrome. Epilepsy is considered to be resolved for individuals who either had an agedependent epilepsy syndrome but are now past the applicable age or who have remained seizure-free for the last 10 years and off antiseizure medicines for at least the last 5 years. "Resolved" is not necessarily identical to the conventional view of "remission or "cure." Different practical definitions may be formed and used for various specific purposes. This revised definition of epilepsy brings the term in concordance with common use.

KEY WORDS: Epilepsy, Seizure, Definition, Unprovoked, Recurrence.

Table 2. Operational (practical) clinical definition of epilepsy

Epilepsy is a disease of the brain defined by any of the following conditions

- I. At least two unprovoked (or reflex) seizures occurring >24 h apart
- 2. One unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years
- 3. Diagnosis of an epilepsy syndrome

Epilepsy is considered to be *resolved* for individuals who had an age-dependent epilepsy syndrome but are now past the applicable age or those who have remained seizure-free for the last 10 years, with no seizure medicines for the last 5 years.

Its intent is to encompass circumstances for which some practitioners and expert epileptologists manage patients as if epilepsy is present after a single unprovoked seizure, because of a very high risk of recurrence.

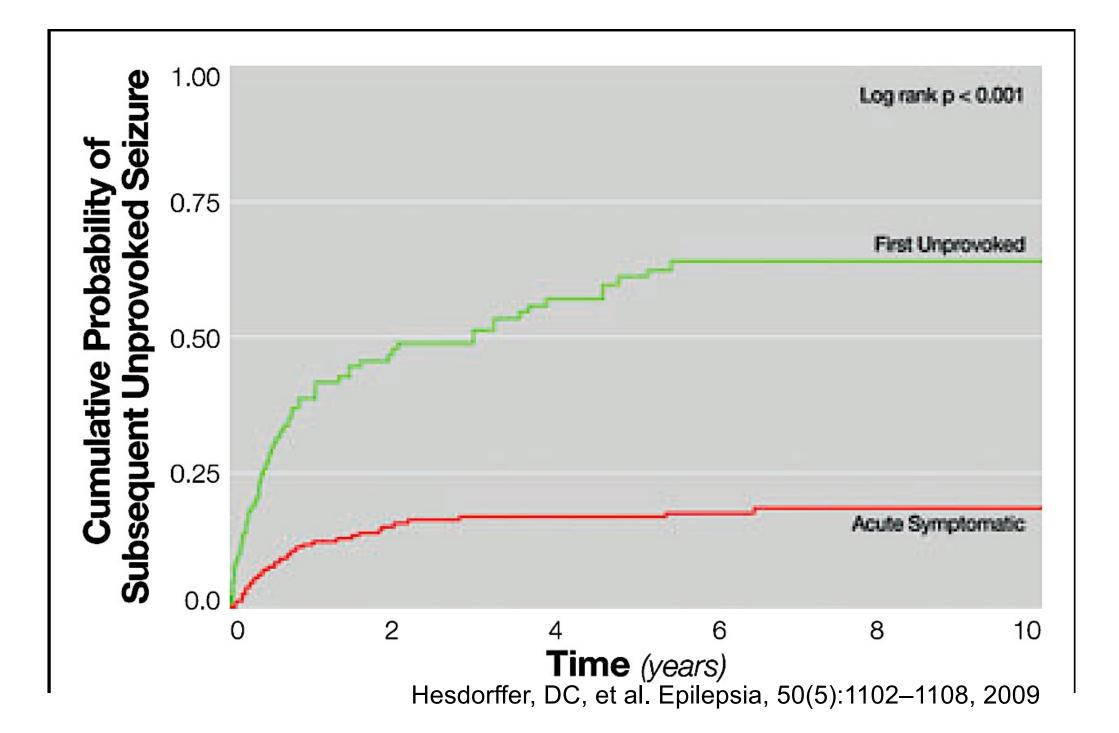
Such examples may include patients with a single seizure occurring at least a month after a stroke or a child with a single seizure conjoined with a structural or remote symptomatic etiology and an epileptiform electroencephalography(EEG) study

Epilepsia, 50(5):1102–1108, 2009 doi: 10.1111/j.1528-1167.2008.01945.x

FULL-LENGTH ORIGINAL RESEARCH

Is a first acute symptomatic seizure epilepsy? Mortality and risk for recurrent seizure

*Dale C. Hesdorffer, †Emma K. T. Benn, ‡Gregory D. Cascino, and \S ¶W. Allen Hauser


*Department of Epidemiology, The Gertrude H. Sergievsky Center, Mailman School of Public Health at Columbia University, New York, New York, U.S.A.; †Department of Biostatistics, The Gertrude H. Sergievsky Center, Mailman School of Public Health at Columbia University, New York, New York, U.S.A.; ‡Department of Neurology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, U.S.A.; §Department of Neurology, The Gertrude H. Sergievsky Center, Mailman School of Public Health at Columbia University, New York, New York, U.S.A.; and ¶Department of Health Sciences Research, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, U.S.A.

Hesdorffer, DC, et al. Epilepsia, 50(5):1102–1108, 2009

- To compare mortality and subsequent unprovoked seizure risk in a population-based study of acute symptomatic seizure and first unprovoked seizure due to static brain lesions
- Subjects were residents of Rochester, Minnesota, identified through the Rochester Epidemiology Project's records-linkage system between 1/1/55 and 12/31/84.
- Information was collected on age, gender, seizure type, etiology, status epilepticus (SE), 30-day and 10-year mortality, and subsequent episodes of unprovoked seizure.

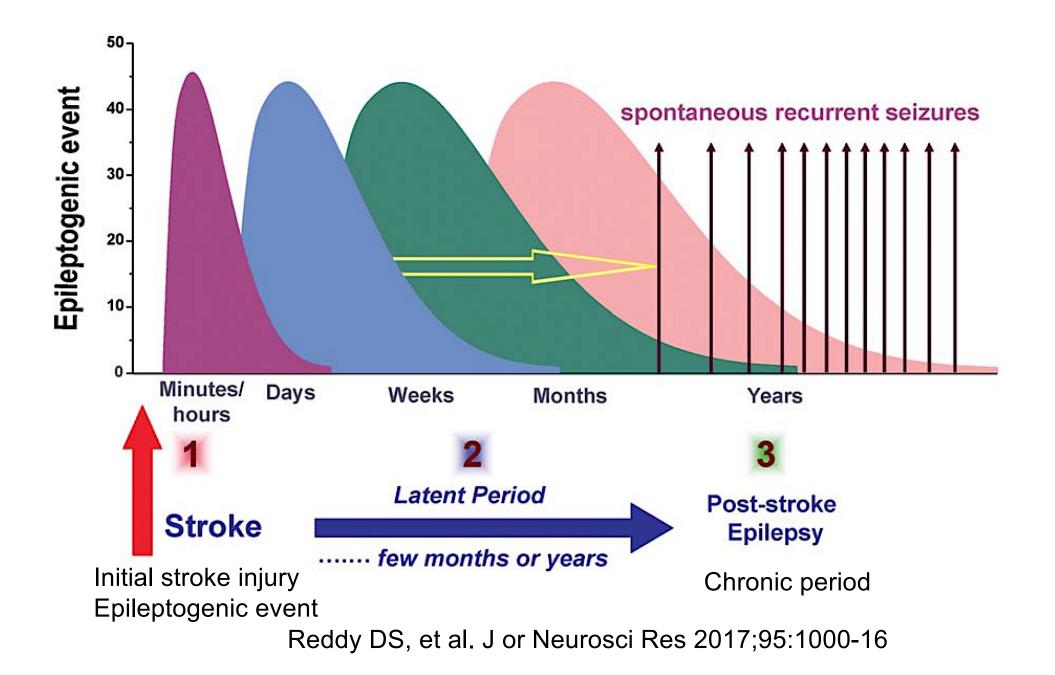
Hesdorffer, DC, et al. Epilepsia, 50(5):1102–1108, 2009

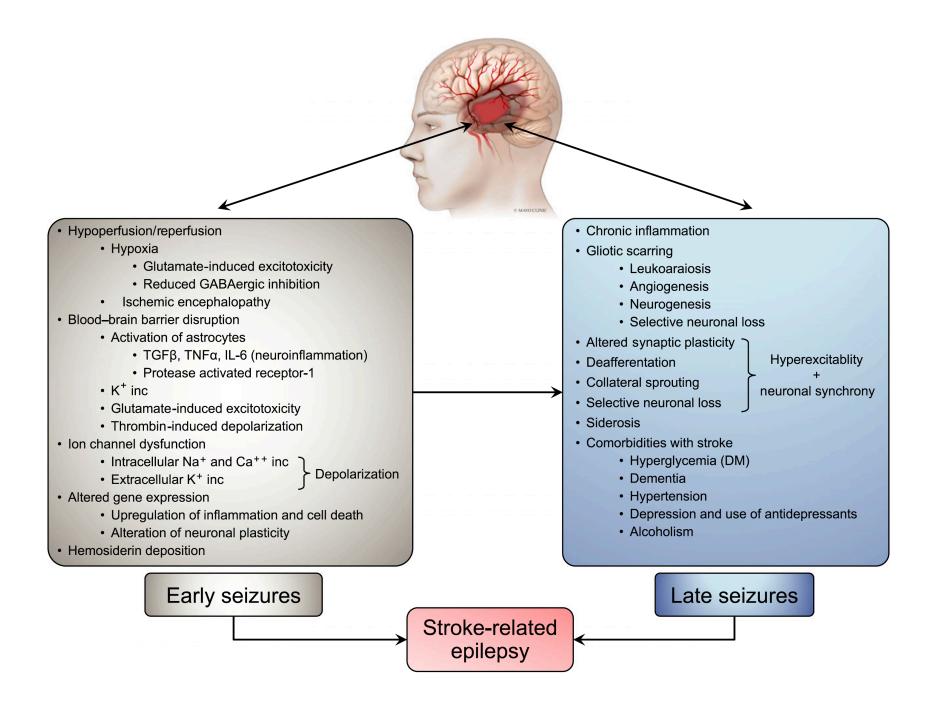
 262 individuals experienced a first acute symptomatic seizure and 148 individuals experienced a first unprovoked seizure, all due to static brain lesions.

Risk of subsequent unprovoked seizure

	Acute symptomatic seizure	First unprovoked seizure	р
Stroke	33.0% (95% CI = 20.7–49.9%)	71.5% (95% CI = 59.7–81.9%)	p = 0.001
Traumatic brain injury	13.4% (95% CI = 7.0–24.8%)	46.6% (95% CI = 30.4–66.3%)	p < 0.001
CNS infection	16.6% (95% CI = 9.5–28.0%)	63.5% (95% CI = 21.2–98.6%)	p = 0.010

Hesdorffer, DC, et al. Epilepsia, 50(5):1102-1108, 2009


- Acute symptomatic seizures
- Late poststroke seizure


=?

Poststroke epilepsy

"The new definition is not uncontroversial, mostly due to conflicting data on the actual recurrence risk of seizures after a first late-poststroke seizure and whether a diagnosis benefits patients"

POSTSTROKE EPILEPTOGENESIS

Feyissa AM, et al. Eur J Neurol 2019, 26: 18–26, e1–e3

EPIDEMIOLOGY OF POSTSTROKE EPILEPSY

- Major cause of epilepsy after middle age
- long-term overall cumulative risk of PSE after a cerebrovascular event varies between 3% and 13%

Cumulative risk of poststroke epilepsy from different series

	Cumulative risk at the end of the study (3-10 yrs)	Remarks
Overall risk	3.2 (7 yrs) 12.4% (10 yrs)	Include series with follow up>3 yrs
Ischemic stroke	2.3% (3 yrs) 4.4% (10 yrs) 8% (9 yrs)	Include prospective series with follow up > 3 yrs
ICH	18.2%(10 yrs) 23% (9 yrs)	Include only series with adequate no. of ICH with follow up > 3 yrs
SAH	12.5% (5 yrs) 21.7% (10 yrs)	Include only series with adequate no. of SAH with follow up > 3 yrs

Zelano J. Ther Adv Neurol Disord 2016; 9:424-35

- Predictors include
 - Stroke severity
 - Cortical locations
 - Hemorrhage
 - Total anterior circulation infarcts
 - Young age at stroke
 - Early seizures

Prediction model	Stroke type	Cohort size (<i>n</i>)	Follow-up (years)	Risk factors scored (values)	STRE predictions
SeLECT score (maximum score 9) [28]	Ischaemic	1200	5	Severity of stroke (0–2) Large-artery atherosclerosis (0–1) ESs (0–3) Cortical involvement (0–2) Territory of MCA involvement (0–1)	Total score ≥ 6 Sensitivity 18.2% Specificity 96.7% PPV 27.2% NPV 94.6%
Post-Stroke Epilepsy Risk Scale (PoSERS) (maximum score 8) [89]	Ischaemic and hemorrhagic	264	1	Supratentorial stroke (0–1) Cortical ICH (0–1) Cortical or subcortical ischaemic stroke (0–1) Ischaemia + ongoing neurological deficit (0–1) Stroke-related neurological deficit, mRS>3 (0–1) Vascular encephalopathy (0–1) ESs (0–1) LSs (0–1)	Total score ≥7 Sensitivity 70% Specificity 99.6% PPV 87.5% NPV 98.8%
CAVE score (maximum score 4) [90]	ICH	993	2.7	Cortical involvement $(0-1)$ Age <65 years $(0-1)$ Volume >10 mm $(0-1)$ ESs $(0-1)$	Score ≥2 Sensitivity 81% Specificity 89% PPV 18% NPV 97%

CAVE, Cortical involvement-Age-Volume-Early seizures; ES, early seizure; ICH, intracerebral hemorrhage; LS, late seizure; MCA, middle cerebral artery; mRS, Modified Rankin Scale; NPV, negative predictive value; PPV, positive predictive value; SeLECT, severity of stroke-largeartery atherosclerotic aetiology-early seizures-cortical involvement- territory of middle cerebral artery involvement.

> Galovic M, et al. Lancet Neurol 2018; 17: 143–52 Strzelczyk A, et al. J Neurol 2010; 257: 1322–6 Haapaniemi E, et al. Stroke 2014; 45: 1971–6

TREATMENT DECISION IN POSTSTROKE EPILEPSY

Acute symptomatic seizures

- There is no evidence to date that treatment with AEDs prevents the development of PSE and the risk of seizure after stroke is relatively low, so primary prevention is usually not appropriate
- Short-term treatment is often initiated if multiple early seizures occur or after a single seizure in cases of ICH or hemorrhagic transformation

AEDS SELECTION IN POST STROKE EPILEPSY

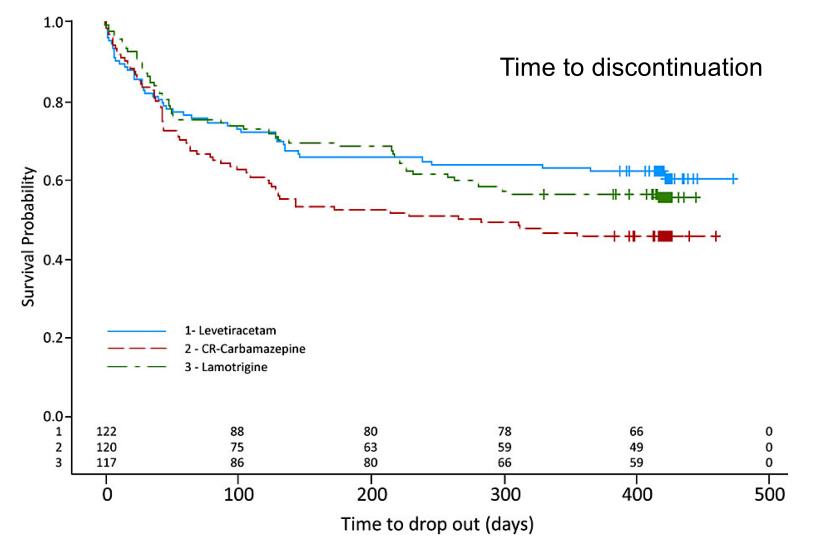
Consideration for using AEDs in post stroke epilepsy

- Efficacy
- Side effects
- Drug interaction

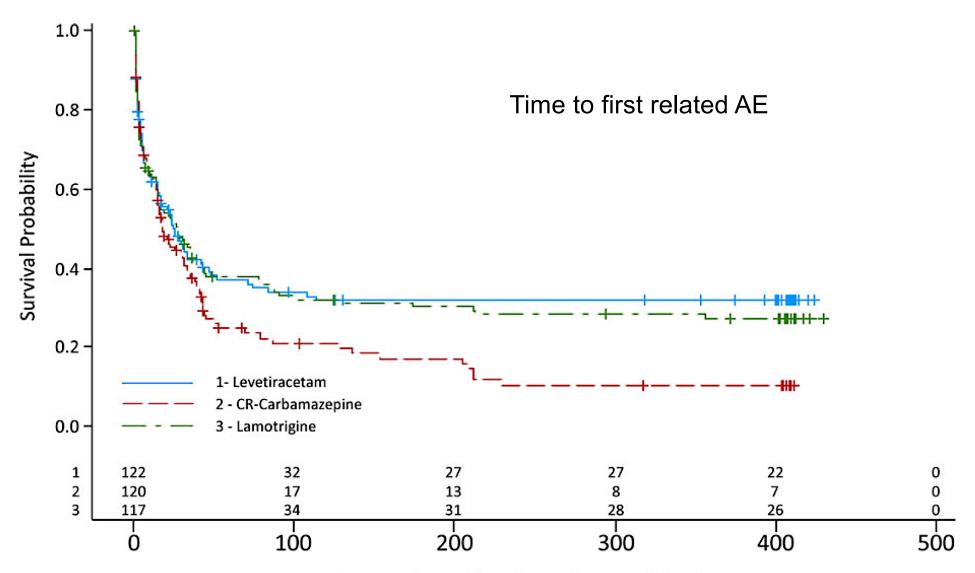
AEDs in the elderly

Study	Type of epilepsy	Discontinuation rates	Efficacy
KOMET (Pohlmann- Eden, 2016)	> 60 yo	LEV <vpa<cbz< td=""><td>similar</td></vpa<cbz<>	similar
Rowan, 2005	New onset epilepsy >60 yo VA population	LTG <gbp<cbz< td=""><td>similar</td></gbp<cbz<>	similar
Werhahn, 2015 (RCT)	New onset epilepsy >60 yo	LEV <ltg<cbz< td=""><td>similar</td></ltg<cbz<>	similar

A randomized, double-blind comparison of antiepileptic drug treatment in the elderly with new-onset focal epilepsy


*^IKonrad J. Werhahn, †‡Eugen Trinka, †‡Judith Dobesberger, ‡Iris Unterberger, §Petra Baum, ¶Maria Deckert-Schmitz, #Tobias Kniess, **Bettina Schmitz, *Viviane Bernedo, ††Christian Ruckes, ††Anne Ehrlich, and ‡‡²Günter Krämer

Objective: To compare the effectiveness of controlled-released carbamazepine (CRCBZ) to levetiracetam (LEV) and to lamotrigine (LTG) in elderly patients with newly diagnosed focal epilepsy


Methods: Randomized, double-blind, parallel-group trial conducted between January 2007 and August 2011, in 47 ambulatory or hospital sites in Germany, Austria, or Switzerland. Eligible participants were aged ≥ 60 , had new-onset epilepsy, had no acute illness as the cause of their seizures, and had no contraindication to the drugs in the trial

361 randomized patients, 359 were included (CR-CBZ n = 121, LTG n = 117, LEV n = 122) in the modified intent-to-treat population (mean age [range] 71.4 [60–95] years).

At week 58, the retention rate for LEV was significantly higher than for CR-CBZ (61.5% vs. 45.8%, p = 0.02), and similar to LTG (55.6%). Seizure freedom rates at weeks 30 and 58 were not different across the groups.

Epilepsia 2015, 56:450-459

Time to first related AE after V0 (days)

Epilepsia 2015, 56:450-459

Contents lists available at ScienceDirect

Seizure: European Journal of Epilepsy

journal homepage: www.elsevier.com/locate/seizure

Randomized controlled trials of antiepileptic drugs for the treatment of poststroke seizures: A systematic review with network meta-analysis

F. Brigo^{a,b,*}, S. Lattanzi^c, J. Zelano^{d,e}, N.L. Bragazzi^f, V. Belcastro^g, R. Nardone^{b,h}, E. Trinka^{h,i,j}

Results:

Only 2 RCTs were included, one comparing levetiracetam (LEV) with CR-CBZ and the other comparing lamotrigine (LTG) with CR-CBZ.

- No significant difference was found in seizure freedom between either LEV or LTG and CR-CBZ.
- Occurrence of AEs were lower for LEV and LTG than for CR-CBZ.
- Indirect comparisons showed:
 - No difference between LEV and LTG for seizure freedom (OR 0.86; 95%CI: 0.15–4.89).
 - Occurrence of AEs was higher for LEV than for LTG (OR 6.87; 95%CI: 1.15–41.1).

Study	Comparisons	Study design	Study phases
Gilad et al., 2007	LTG versus CR- CBZ	Monocentric, randomised, open-label trial	1. Titration: LTG dose increase by 25 mg/week up to 200 mg/day (possible further increase of 50 mg/week until suitable response); CR-CBZ: dose increase by 100 mg/week up to 600 mg/day (possible further increase of 100 mg/day until suitable response);
Consoli et al., 2012	LEV versus CR- CBZ	Multicentre, randomised, open-label trial	 Titration: 2 weeks; LEV starting dose 500 mg/day (250 mg twice daily); CR-CBZ starting dose 200 mg/day (100 mg twice daily) Maintenance: 52 weeks; LEV 1000 mg/day (500 mg twice daily; possible up-titration to maximum of 3000 mg/day); CR-CBZ 600 m/day (300 mg twice daily; possible up-titration to maximum of 1600 mg/day)

Conclusions:

- Direct and indirect comparisons did not find a difference in seizure freedom between the various AEDs, probably because of the small number of patients included.
- LEV and LTG appears better tolerated than CR-CBZ
- LEV seems associated with more AEs than LTG.
- Further studies are required to provide robust evidence on efficacy and tolerability of AEDs for treating poststroke epilepsy

Consideration for using AEDs in post stroke epilepsy

- Efficacy
- Side effects
- Drug interaction

IV AEDs for established SE

	Route of administration	Adult dose
Phenytoin	IV (<50 mg/min)	15-20 mg/kg
Fosphenytoin	IV (<100 mg PE/min)	15-20 mg PE/kg
Phenobarbital	IV (<100 mg/min)	10-20 mg/kg
Valproate	IV (50-100 mg/min)	20-30 mg/kg
Levetiracetam	IV (100 mg/min)	2000-4000 mg
Lacosamide	IV (30-60 min/ up to 15 min)	200-400 mg

Shorvon S. Curr Opin Neurol 2011;24:165–170

Caution of SE of AEDs in elderly

AEDs	Special precautions
Phenobarbital	Drowsiness, cognitive dysfunction May reduce effects of other drugs (enzyme inducer)
Phenytoin	Reduced metabolism and clearance Reduced protein binding → increased free fraction Increase incidence of adverse effects PHT level may be increased by amiodarone, cimetidine, isoniazid, trazodone May reduce effects of other drugs (enzyme inducer)
Carbamazepine	Increase incidence of adverse effects May reduce effects of other drugs (enzyme inducer) Hyponatremia
Sodium valproate	Drowsiness, parkinsonism Thrombocytopenia
Oxcarbazepine	Increase incidence of adverse effects Hyponatremia
Topiramate	Cognitive side effects at higher dosage (can be avoided by slow titration)

Hyperlipidemia in patients newly treated with anticonvulsants: A population study

Scott Mintzer¹ | Misung Yi² | Sarah Hegarty² | Vittorio Maio³ | Scott Keith²

Objective: To determine the incidence of hyperlipidemia after first anticonvulsant treatment for seizures, using a large US administrative claims database. Results: Of 11,374 subjects, 8778 (77%) were prescribed noninducers and 2596 (23%) were prescribed inducers.

New hyperlipidemia diagnoses were seen in 14.6% of the patients started on EIAEDs and 10.7% of the patients started on NEIAEDs (P < .001). After accounting for covariates, EIAED was still associated with 23% higher odds of a subsequent diagnosis of hyperlipidemia (OR = 1.225, 95% confidence interval = 1.066-1.408, P 0.004).

Mintzer S, et al. Epilepsia. 2020;61:259–66.

Unadjusted results among patients treated with inducing or noninducing AEDs

	All subjec	ts	Inducers		Noninducers		
	n	%	n	%	n	%	Р
Hyperlipidemia	1316	11.57%	379	14.60%	937	10.67%	<.0001
Cardiovascular diseases	682	6.00%	221	8.51%	461	5.25%	<.0001
Hyperlipidemia or cardiovascular diseases	1841	16.19%	546	21.03%	1295	14.75%	<.0001

Fully adjusted analysis results for association of incident hyperlipidemia diagnoses in patients newly prescribed AEDs

Effect	Odds ratio	95% CI, low-high	Р
Inducing vs noninducing drug	1.225	1.066-1.408	.004 ^a
Age, per 10-y increase	1.072	1.035-1.110	<.001 ^a
Male sex	1.211	1.070-1.370	.002 ^a
Year of diagnosis	0.824	0.777-0.873	<.001 ^a

Consideration for using AEDs in post stroke epilepsy

- Efficacy
- Side effects
- Drug interaction

Interaction with cardiac drugs

- Phenytoin → ↓ amiodarone level (CYP induction)
 ↓ digoxin level (upreg. P-gp)
- Enzyme inducers
 - → ↓ calcium channel blocker level
 ↓ beta blocker level
- Verapamil and diltiazem inhibits carbamazepine metabolism
- Potential interaction of EIAEDs with drug used in secondary prophylaxis

Drug interaction with warfarin

- Metabolites through CYP3A4, 2C9
- Phenytoin, phenobarbital and carbamazepine reduce the concentration of warfarin by up to 50-65%
- Phenobarbital and carbamazepine also reduce the anticoagulation effects of warfarin metabolites
- Newer AEDs do not have significant interaction with anticoagulant

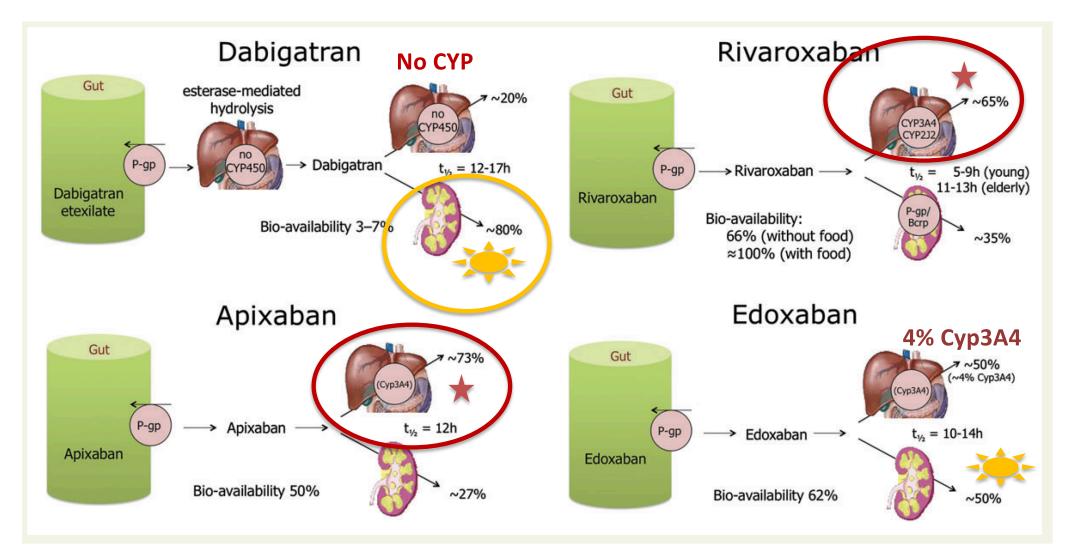

Interaction between AEDs and NOACs

Table 2 Non-VKA oral anticoagulant drugs, approved for prevention of systemic embolism or stroke in patients withnon-valvular AF

	Dabigatran	Apixaban	Edoxaban	Rivaroxaban
Action	Direct thrombin inhibitor	Activated factor Xa inhibitor	Activated factor Xa inhibitor	Activated factor Xa inhibitor
Dose	150 mg BID 110 mg BID ^{a,b} (75 mg BID) ^b	5 mg BID 2.5 mg BIDª	60 mg OD ^c 30 mg OD ^a	20 mg OD 15 mg OD ^a
Phase III clinical trial	RE-LY ²⁵	ARISTOTLE ²⁶ AVERROES ²⁷	ENGAGE-AF ²⁸	ROCKET-AF ²⁹

- Intestinal absorption and renal elimination of NOACs are dependent on the intestinal and renal permeability glycoprotein (P-gp) efflux transporter protein system
- Some NOACs are substrates of the hepatic CYP3A4 enzymes
- Induction of P-gp or CYP3A4 might decrease serum NOAC levels, reduce anticoagulant effects and lead to an increase in embolic risk.

Absorption and metabolism of the different new anticoagulant drugs

DE-RA

P-glycoprotein

- Permeability glycoprotein
- Also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette subfamily B member 1 (ABCB1) or cluster of differentiation 243 (CD 243)
- Important protein of the cell membrane that pumps foreign substances out of cells
- ATP-dependent efflux pump with broad substrate specificity
- Encoded by the *ABCB1* gene

P glycoprotein expression

- <u>Intestinal epithelium</u>: pumps xenobiotics (eg. toxins or drugs) back into the intestinal lumen
- Liver cells: pumps xenobiotics into bile ducts
- <u>Cells of the proximal tubules of the kidney</u>: pumps xenobiotics into urinary filtrate (in the proximal tubule)
- <u>Capillary endothelial cells</u> composing the blood brain barrier and blood testis barrier: pumps back into the capillaries

P-gp transports various substrates across the cell membrane

- Drugs such as colchicine, desloratadine, tacrolimus and quinidine.
- Chemotherapeutic agents such as topoisomerase inhibitors (i.e. etoposide, doxorubicin), microtubule-targeted drugs (i.e. vinblastine), and tyrosine kinase inhibitors (i.e. gefitinib, sunitinib)
- Lipids
- Steroids
- Peptides
- Bilirubin
- Cardiac glycosides like digoxin
- Immunosuppressive agents
- Glucocorticoids like dexamethasone
- HIV-type 1 antiretroviral therapy agents like protease inhibitors and nonnucleoside reverse transcriptase inhibitors

Europace (2015) 17, 1467–1507

Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation

Hein Heidbuchel¹*, Peter Verhamme², Marco Alings³, Matthias Antz⁴, Hans-Christoph Diener⁵, Werner Hacke⁶, Jonas Oldgren⁷, Peter Sinnaeve², A. John Camm⁸, and Paulus Kirchhof^{9,10}

Advisors:, Azhar Ahmad, M.D. (Boehringer Ingelheim Pharma), Jutta Heinrich-Nols, M.D. (Boehringer Ingelheim Pharma), Susanne Hess, M.D. (Bayer Healthcare Pharmaceuticals), Markus Müller, M.D., Ph.D. (Pfizer Pharma), Felix Münzel, Ph.D. (Daiichi-Sankyo Europe), Markus Schwertfeger, M.D. (Daiichi-Sankyo Europe), Martin Van Eickels, M.D. (Bayer Healthcare Pharmaceuticals), and Isabelle Richard-Lordereau, M.D. (Bristol Myers Squibb/Pfizer)

Document reviewers:, Gregory Y.H. Lip, (Reviewer Coordinator; UK), Chern-En Chiang, (Taiwan), Jonathan Piccini, (USA), Tatjana Potpara, (Serbia), Laurent Fauchier, (France), Deirdre Lane, (UK), Alvaro Avezum, (Brazil), Torben Bjerregaard Larsen, (Denmark), Guiseppe Boriani, (Italy), Vanessa Roldan-Schilling, (Spain), Bulent Gorenek, (Turkey), and Irene Savelieva, (UK, on behalf of EP-Europace)

	via	Dabigatran	Apixaban	Edoxaban	Rivaroxaban
Fungostatics					
Fluconazole	Moderate CYP3A4 inhibition	No data yet	No data yet	No data yet	+42% (if systemically administered) ²⁴⁷
Itraconazole; Ketoconazole; Posaconazole; Voriconazole;	potent P-gp and BCRP competition; CYP3A4 inhibition	+140-150% (US: 2 x 75 mg if CrCl 30-50 ml/min)	+100% ⁶⁰	+87-95% ⁶⁴ (reduce NOAC dose by 50%)	Up to +160% ²⁴⁷
Immunosuppressive					
Cyclosporin; Tacrolimus	P-gp competition	Not recommended	No data yet	+73%	Extent of increase unknown
Antiphlogistics					
Naproxen	P-gp competition	No data yet	+55% ²⁵⁴	No effect (but pharmacodynamically increased bleeding time)	No data yet
Antacids					
H2B; PPI; Al-Mg-hydroxide	GI absorption	Minus 12- 30% ^{45, 53, 58}	No effect ⁵⁵	No effect	No effect ^{241, 242}
Others					
Carbamazepine ^{***} ; Phenobarbital ^{***} ; Phenytoin ^{***} ; St John's wort ^{***}	P-gp/ BCRP and CYP3A4/CYP2J 2 inducers	minus 66% ²⁵³	minus 54% ^{SmPC}	minus 35%	Up to minus 50%

The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation

Jan Steffel¹*, Peter Verhamme², Tatjana S. Potpara³, Pierre Albaladejo⁴, Matthias Antz⁵, Lien Desteghe⁶, Karl Georg Haeusler⁷, Jonas Oldgren⁸, Holger Reinecke⁹, Vanessa Roldan-Schilling¹⁰, Nigel Rowell¹¹, Peter Sinnaeve², Ronan Collins¹², A. John Camm¹³, and Hein Heidbüchel^{6,14}

Advisors: Martin van Eickels, M.D. (Bayer Healthcare), Jutta Heinrich-Nols, M.D. (Boehringer Ingelheim), Markus Müller, M.D., Ph.D. (Pfizer), Wolfgang Zierhut M.D. (Daiichi-Sankyo) and Poushali Mukherjea, Ph.D. (Bristol-Myers Squibb)

Document reviewers (ESC scientific document group): Gregory YH Lip (EHRA Review Coordintaor; UK, Denmark), Jeffrey Weitz (Canada), Laurent Fauchier (France), Deirdre Lane (UK), Giuseppe Boriani (Italy), Andreas Goette (Germany), Roberto Keegan (Argentina), Robert MacFadyen (Australia), Chern-En Chiang (Taiwan), Boyoung Joung (Korea), and Wataru Shimizu (Japan)

	Via ^{142,145,146}	Dabigatran	Apixaban ¹³⁰	Edoxaban	Rivaroxaban
SmPC= Summary of product characteristics		etexilate			
P-gp substrate		Yes	Yes	Yes	Yes
CYP3A4 substrate		No	Yes (≈25%)	No (<4%)	Yes (≈18%)
Drug					
Carbamazepine	Strong CYP3A4/P-gp induction; CYP3A4 competition	SmPC	-50% ^{5mPC}	-35% ^{SmPC}	SmPC, Ref. ¹⁴⁷
Ethosuximide	CYP3A4 competition; No relevant interaction known/assumed				
Gabapentin	No relevant interaction known/assumed				
Lamotrigine	P-gp competition; No relevant interaction known/assumed				
Levetiracetam	P-gp induction; P-gp competition				
Oxcarbazepine	CYP3A4 induction; P-gp competition				
Phenobarbital	Strong CYP3A4/P-gp induction; P-gp competition		SmPC	SmPC	/SmPC/
Phenytoin	Strong CYP3A4/P-gp induction; P-gp competition	SmPC, Ref. ¹⁴⁸	SmPC	SmPC	SmPC
Pregabalin	No relevant interaction known/assumed				
Topiramate	CYP3A4 induction; CYP3A4 competition				
Valproic acid	CYP3A4/P-gp induction				Ref. ¹⁴⁹
Zonisamide	CYP3A4 competition; No relevant interaction known/assumed				

	Via ^{142,145,146}		Apixaban ¹³⁰	Edoxaban	Rivaroxaban
SmPC= Summary of product characteristics		etexilate			
P-gp substrate		Yes	Yes	Yes	Yes
CYP3A4 substrate		No	Yes (≈25%)	No (<4%)	Yes (≈18%)
Drug					
Carbamazepine	Strong CYP3A4/P-gp induction; CYP3A4 competition	SmPC	-50% ^{SmPC}	-35% ^{SmPC}	/SmPC, Ref. ¹⁴⁷ /
Ethosuximide	CYP3A4 competition; No relevant interaction known/assumed				
Gabapentin	No relevant interaction known/assumed				
Lamotrigine	P-gp competition; No relevant interaction known/assumed				
Levetiracetam	P-gp induction; P-gp competition				
Oxcarbazepine	CYP3A4 induction; P-gp competition				
Phenobarbital	Strong CYP3A4/P-gp induction; P-gp competition		SmPC	SmPC	/SmPC/
Phenytoin	Strong CYP3A4/P-gp induction; P-gp competition	SmPC, Ref. ¹⁴⁸	SmPC	SmPC	SmPC
Pregabalin	No relevant interaction known/assumed				
Topiramate	CYP3A4 induction; CYP3A4 competition				
Valproic acid	CYP3A4/P-gp induction				Ref. ¹⁴⁹
Zonisamide	CYP3A4 competition; No relevant interaction known/assumed				

Epilepsy Research (2011) 94, 18–25

Antiepileptic drugs modulate P-glycoproteins in the brain: A mice study with ¹¹C-desmethylloperamide

Lieselotte Moerman^{a,*}, Leonie wyffels^{a,1}, Dominique Slaets^{a,1}, Robrecht Raedt^{b,2}, Paul Boon^{b,2}, Filip De Vos^{a,1}

 ^a Laboratory of Radiopharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
 ^b Laboratory for Clinical and Experimental Neurophysiology (LCEN), Department Neurology, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium

Received 5 July 2010; received in revised form 1 December 2010; accepted 27 December 2010 Available online 31 January 2011

Epilepsy Research 2011;94:18—25

Contents lists available at www.sciencedirect.com

Epilepsy Research

journal homepage: www.elsevier.com/locate/epilepsyres

Short communication

Interactions between non-vitamin K oral anticoagulants and antiepileptic drugs

Claudia Stöllberger*, Josef Finsterer

Krankenanstalt Rudolfstiftung, Wien, Austria

ARTICLE INFO

Article history: Received 12 April 2016 Received in revised form 1 June 2016 Accepted 24 June 2016 Available online 9 July 2016

Keywords: Atrial fibrillation Stroke Seizure Drug-drug interaction

ABSTRACT

Atrial fibrillation (AF) is a frequent cause of stroke. Secondary prophylaxis by oral anticoagulants (OAC) is recommended after stroke in AF-patients. OAC can be achieved by vitamin-K antagonists (VKAs) or non-vitamin K antagonist oral anticoagulants (NOACs) like dabigatran, rivaroxaban, apixaban or edoxaban. Seizures are frequent after stroke, and antiepileptic drugs (AEDs) are indicated. The review, based on a literature research, aims to give an overview about pharmacokinetic knowledge and clinical data about drug-drug interactions (DDIs) between NOACs and AED.

Carbamazepine, levetiracetam, phenobarbital, phenytoin and valproic acid might decrease the effect of NOACs by inducing P-glycoprotein (P-gp) activity. Carbamazepine, oxcarbazepine, phenytoin, phenobarbital and topiramate might decrease the effect of NOACs by inducing CYP3A4 activity. Controversial data – inhibition as well as induction of CYP3A4 – were found about valproic acid.

The relevance of these DDIs is largely unknown since there are only sporadic case reports available. To increase the knowledge about DDIs between NOACs and AEDs we suggest subgroup analyses addressing effects and safety of VKAs versus NOACs in patients with AF on AEDs, in case they have been included in previously completed or still ongoing trials or registries. This could be easily feasible and would be desirable in view of the large data already accumulated.

© 2016 Elsevier B.V. All rights reserved.

Epilepsy Research 2016;126:98-101

Antiepileptic drugs and evidence of their effects on the activity of Pglycoprotein and CYP 3A4

Antiepileptic drug	P-GP	Evidence	CYP 3A4	Evidence
Carbamazepine	↑ (Giessmann et al., 2004)	Humans	↑ (Puranik et al., 2013)	Humans
Ethosuximide	NR		NR	
Gabapentin	NR		NR	
Lamotrigine	No effect (Wang-Tilz et al., 2006)	Animals	NR	
Levetiracetam	↑ (Moerman et al., 2011)	Animals	No effect (Nicolas et al., 1999)	In vitro
Oxcarbazepine	NR		↑(Andreasen et al., 2007)	Humans
Phenobarbital	↑ (Jing et al., 2010)	Animals	↑ (Ohno et al., 2009)	In vitro
Phenytoin	↑ (Alvariza et al., 2014)	Animals	↑ (Lim et al., 2004)	Humans
Pregabalin	NR		NR	
Topiramate	No effect (Wang-Tilz et al., 2006)	Animals	↑ (Nallani et al., 2003)	In vitro
Valproic acid	↑ (Eyal et al., 2006)↓ (Tang et al., 2004)	In vitro	↑ (Cerveny et al., 2007)↓ (Wen et al., 2001)	In vitro
Zonisamide	NR		NR	a

 \uparrow = Inducer.

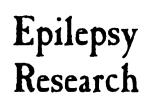
 \downarrow = Inhibitor.

NR = not reported.

Antiepileptic drugs and reports about interaction with NOACs

Antiepileptic drug	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Carbamazepine	NR	1 CR (Risselada et al., 2013)	NR	NR
Ethosuximide	NR	NR	NR	NR
Gabapentin	NR	NR	NR	NR
Lamotrigine	NR	NR	NR	NR
Levetiracetam	NR	NR	NR	NR
Oxcarbazepine	NR	1 CR (Serra et al., 2015)	NR	NR
Phenobarbital	CS (Chin et al., 2014)	NR	NR	NR
Phenytoin	CS (Chin et al., 2014)CR (Wiggins et al., 2016)	NR	NR	NR
Pregabalin	NR	NR	NR	NR
Topiramate	NR	NR	NR	NR
Valproic acid	NR	1 CR (Stöllberger and Finsterer, 2014)	NR	NR
Zonisamide	NT	NR	NR	NR

CR = Case report.


CS = clinical series.

NR = not reported.

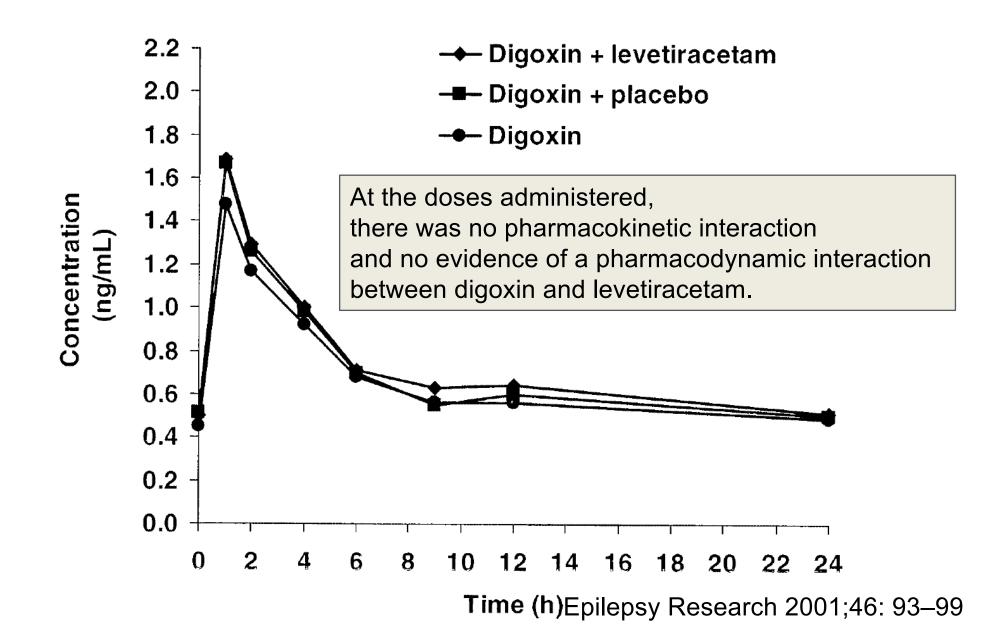
Epilepsy Research 2016;126:98–101

Epilepsy Research 46 (2001) 93–99

www.elsevier.com/locate/epilepsyres

Repeated administration of the novel antiepileptic agent levetiracetam does not alter digoxin pharmacokinetics and pharmacodynamics in healthy volunteers

R.H. Levy ^{a,*}, I. Ragueneau-Majlessi ^a, E. Baltes ^b


^a Department of Pharmaceutics, University of Washington, H-272 Health Sciences Building, Box 357610, Seattle, WA 98195, USA ^b UCB S.A. Pharma Sector, Brussels, Belgium

Received 10 October 2000; accepted 3 January 2001

Epilepsy Research 2001;46: 93–99

- Two-way crossover design
- Double-blind, placebo-controlled study
- Seven men and four women (19–48 years old)
- Each received digoxin 0.25 mg once daily (0.5 mg on day 1) during the 1-week run-in period, followed by two 1-week periods of digoxin with levetiracetam (2000 mg/day) or placebo
- The pharmacokinetics of digoxin and levetiracetam were assessed by analysis of blood samples

Evolution over time of serum concentrations (mean values; n=11) of digoxin at steady state in three conditions

Levetiracetam and non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation and epilepsy: a reasonable combination

Tim J. von Oertzen ()¹*, Eugen Trinka ()², and Natan M. Bornstein³

¹Department of Neurology 1, Kepler Universitätsklinikum, Wagner-JureggWeg 15, 4020 Linz, Austria, and European Academy of Neurology (EAN), Scientific Panel Epilepsy; ²Department of Neurology, Christian Doppler Klinik, University Hospital Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria, International League Against Epilepsy Europe (ILAE-EUROPE) and EAN Scientific Panel Epilepsy; and ³Shaarei Zedek Medical Center, 12 Shmuel Bait St., Jerusalem 9103102, Israel and EAN Scientific Panel Stroke

Online publish-ahead-of-print 20 September 2019

European Heart Journal 2019. 40: 3800-01

We are concerned about the expert advice given, classifying levetiracetam as contraindicated due to concerns over potentially reduced plasma levels of NOACs. We are arguing against such advice for the following reasons:

(1) The rate of post-stroke epilepsy (PSE) is expected in 8% of stroke patients after 5 years. Predictors include severity of stroke, cortical involvement, and territory of middle cerebral artery involvement, indicating a high proportion of patients with AF as stroke aetiology and the need of life-long oral anticoagulant and antiepileptic therapy.

(2) So far, there are no clinically relevant drug–drug interactions known with levetiracetam. Additional characteristics such as linear pharmacokinetics, renal clearance, and little risk for cognitive impairment are particular useful features for AED treatment with levetiracetam in the elderly with multimorbidity and polypharmacotherapy.

(3) Levetiracetam was shown to be superior to extended release carbamazepine in a randomized controlled trial in the elderly, mostly suffering from PSE. Superiority in AED trials is rarely reached, so this result is highly respected.

(4) PSE is a serious condition with increased mortality and reduced functional outcome. Withholding or switching a well-established therapy with levetiracetam according to the advice given in the guidance, puts patients on significant risk of break through seizures and status epilepticus including an additional risk for injuries including intracranial haemorrhage underNOAC therapy.

2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation

Jan Steffel¹*, Ronan Collins², Matthias Antz³, Pieter Cornu⁴, Lien Desteghe^{5,6}, Karl Georg Haeusler⁷, Jonas Oldgren⁸, Holger Reinecke⁹, Vanessa Roldan-Schilling¹⁰, Nigel Rowell¹¹, Peter Sinnaeve¹², Thomas Vanassche¹², Tatjana Potpara¹³, A. John Camm¹⁴, and Hein Heidbüchel^{5,6}

Steffel J, et al. Europace 2021; 0:1-65

	Via ^{426, 539-541}	Dabigatran etexilate	Apixaban	Edoxaban	Rivaroxaban
P-gp substrate		Yes	Yes	Yes	Yes
CYP3A4 substrate		No	Yes (≈25%)	No (<4%)	Yes (≈18%)
		Drug			
Brivaracetam	-		No relevant interac	tion known/assumed	
Carbamazepine	Strong CYP3A4/P-gp induction; CYP3A4 competition	-29% 542	-50% (SmPC)	SmPC	SmPC
Ethosuximide	CYP3A4 competition		No relevant interac	tiøn known/assumed	
Gabapentin	-		Nø relevant interac	tion known/assumed	
Lacosamide	-		No relevant interac	tion known/assumed	
Lamotrigine	P-gp competition		No relevant interac	tion known/assumed	
Levetiracetam	P-gp induction; P-gp competition				
Oxcarbazepine	CYP3A4 induction; P-gp competition				
Phenobarbital	Strong CYP3A4/possible P-gp induction		SmPC	SmPC	SmPC
Phenytoin	Strong CYP3A4/P-gp induction; P-gp competition	SmPC ⁵⁴³	SmPC	SmPC	SmPC
Pregabalin	-		No relevant interac	tion known/assumed	
Topiramate	CYP3A4 induction; CYP3A4 competition				
Valproic acid	CYP3A4/P-gp induction/inhibition				Ref 544
Zonisamide	CYP3A4 competition; weak P-gp inhibition		No relevant interaction	knøwnlassumed (Srh	PC

- Colour coding is based on the respective NOAC SmPC (Summary of Product Characteristics), drug interaction databases, or expert opinion.
- The hatched colour coding indicates no clinical or PK data available.
- Some of the colour codes will likely require adaptation as more data become available over time.
- White: No relevant drug–drug interaction anticipated.
- Blue (dark): Contraindicated due to reduced NOAC plasma levels.
- Blue (light): Caution required, especially in case of polypharmacy or in the presence of >_2 light blue interactions due to reduced NOAC plasma levels.

POSTSTROKE EPILEPSY PREVENTION

Statin treatment reduces the risk of poststroke seizures

ABSTRACT

Objective: To examine the potential efficacy of statin treatment in reducing the risk of poststroke seizures.

Methods: In this cohort study, patients with a first-ever ischemic stroke and no history of epilepsy before stroke were enrolled. After a mean follow-up period of 2.5 years, a follow-up assessment was performed to identify poststroke epilepsy. Logistic regression and Cox regression analyses were used to assess the relationship between statin use and poststroke early-onset seizures or poststroke epilepsy.

Results: Of 1,832 enrolled patients, 63 (3.4%) patients had poststroke early-onset seizures and 91 (5.0%) patients had poststroke epilepsy. Statin use was associated with a lower risk of poststroke early-onset seizures (odds ratio [OR] 0.35, 95% confidence interval [CI] 0.20–0.60, p < 0.001), and this reduced risk was seen mainly in patients who used a statin only in the acute phase (OR 0.36, 95% CI 0.20–0.62, p < 0.001). No significant association was found between statin use and poststroke epilepsy (OR 0.81, 95% CI 0.52–1.26, p = 0.349). In 63 patients who presented with early-onset seizures, statin use was associated with reduced risk of poststroke epilepsy (OR 0.34, 95% CI 0.13–0.88, p = 0.026).

Conclusions: Statin use, especially in the acute phase, may reduce the risk of poststroke earlyonset seizures. In addition, statin treatment may prevent the progression of initial poststroke seizure-induced neurodegeneration into chronic epilepsy. Because of the observational nature of the study, more studies are needed to confirm the results.

Classification of evidence: This study provides Class III evidence that in patients with a first-ever ischemic stroke, the early use of statins reduces the risk of early poststroke seizures. **Neurology® 2015;85:701-707**

Guo J, et al. Neurology 2015;85:701-7

Table 3 Effect of statin treatment on poststroke early-onset seizures and poststroke epilepsy								
	ES	ES				PSE		
	Unadjusted		Adjusted		Unadjusted		Adjusted	
Statin use	OR (95% CI)	p	OR (95% CI)	p	OR (95% CI)	р	OR (95% CI)	р
Anytime	0.32 (0.19-0.53)	<0.001	0.35 (0.20-0.60)	<0.001	0.64 (0.42-0.98)	0.041	0.81 (0.52-1.26)	0.349
Prestroke only		-	_	-	-	-	_	-
Acutely only	0.33 (0.20-0.55)	<0.001	0.36 (0.20-0.62)	<0.001	0.65 (0.42-1.01)	0.054	0.82 (0.52-1.28)	0.376
Prestroke and acutely	0.24 (0.06-1.00)	0.051	0.24 (0.05-1.07)	0.061	0.65 (0.26-1.67)	0.356	0.90 (0.34-2.38)	0.837

Abbreviations: CI = confidence interval; ES = poststroke early-onset seizures; OR = odds ratio; PSE = poststroke epilepsy.

Early use of statin appeared to reduce the risk of early poststroke seizure

Guo J, et al. Neurology 2015;85:701-7

PROGNOSIS

- PSE is often described as an easily manageable form of epilepsy, where monotherapy suffices to control seizures
- However, only reports from small case series existed with varying results

Silverman et al. 2002, Bryndziar et al. 2015, Zelano et al. 2015

- Compared with the information on the risk of developing PSE, there is less information on morbidity or mortality associated with the condition.
- In a prospective cohort of 631 patients with a transient ischemic attack or ischemic stroke, aged 18-50 years, poststroke epilepsy was associated with increased 30 day mortality (HR 4.8; 95% CI, 1.7–14.0) and long term mortality (HR 1.8; 95% CI, 1.2–2.9)

Frequency and Mortality of SE

	Proportion of Cases of SE, %	Associated Acute Mortality in Patients With SE, %
Drug reduction/withdrawal, poor compliance, or low AED levels	10-20	0-10
Cerebrovascular disease	10-40	20-60
Metabolic disorders	5-15	10-35
Acute CNS infections ^b	0-10	0-30
Anoxia	5-10	60-100
Alcohol abuse	5-15	0-10
Head trauma	0-10	0-25
Drug overdose/toxicity	0-10	10-25
Brain tumors	0-10	0-20
Cryptogenic/idiopathic	5-15	5-20

Neligan A. Arch Neurol 2010;67:931-40

CONCLUSION

- PSE is a major cause of epilepsy after middle age
- Consideration for treatment with AEDs in post stroke epilepsy
 - Efficacy
 - Side effects
 - Drug interaction

- Over the last decade, there have been remarkable improvements in the management of acute stroke.
- Advances in the knowledge of mechanism, management and prevention of poststroke seizures is still the subject that need further studies.