# New Antiepileptic Drugs in Children

Surachai Likasitwattanakul, M.D. Department of Pediatrics Faculty of Medicine, Siriraj Hospital

# Antiepileptic drugs: FDA approval

| Before 1993   | 1993-2005     | 2009-2014                         |
|---------------|---------------|-----------------------------------|
| Carbamazepine | Felbamate     | Vigabatrin                        |
| Clonazepam    | Gabapentin    | Rufinamide (≥ 4 yrs with LGS)     |
| Diazepam      | Lamotrigine   | Lacosamide (≥ 17 yrs)             |
| Ethosuccimide | Levetiracetam | Clobazam ( $\geq$ 2 yrs with LGS) |
| Lorazepam     | Oxcarbazepine | Ezogabine (≥ 18 yrs)              |
| Phenobarbital | Pregabalin    | Perampanel (≥ 12 yrs)             |
| Phenytoin     | Tiagabine     | Eslicarbazepine (≥ 18 yrs)        |
| Primidone     | Topiramate    |                                   |
| Valproic acid | VNS           | Stiripental (only in Europe)      |
|               | Zonisamide    |                                   |

### Lacosamide

- Available now in Thailand
- FDA approve in adjunctive therapy in patients
  ≥ 17 years with partial onset seizure
- Available in
  - Oral solution
  - Tablet
  - Injection

### Pediatric use of Lasosamide

- Not yet FDA approve
- However, data of the use of lacosamide in pediatric population is promising
  - Use in pediatric patients
  - Use in very young patients
  - Use in Lennox-Gastaut syndrome
  - Use in Status epilepticus

| Study                           | No. of<br>Patients<br>Age (range) | Seizure<br>Type<br>)                                                            | Patients<br>experiencing<br>≥50% reduction<br>in seizure<br>frequency | Patients who<br>discontinued<br>therapy (%)                     | Mean<br>Effective<br>Dosage (mg/<br>kg/day)<br>(range) | Adverse effects reported during treatment (%)                                                                                                |
|---------------------------------|-----------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Gavatha<br>et al <sup>9</sup>   | 14<br>(3-18 yr)                   | Focal onset                                                                     | 5 (36%)                                                               | 12 (67%) due to<br>lack of efficacy<br>at initial<br>assessment | 6.34<br>(1.7-10)                                       | Somnolence (17%),<br>irritability (11%), sleep<br>disturbances (6%),<br>pancytopenia (6%)                                                    |
|                                 |                                   |                                                                                 |                                                                       | 1 (6%) due to<br>ADE                                            |                                                        |                                                                                                                                              |
| Guilhoto<br>et al <sup>10</sup> | 16<br>(8-21 yr)                   | Focal onset                                                                     | 6 (37.5%)                                                             | 2 (12.5%)<br>due to lack of<br>efficacy                         | 4.7<br>(0.5-8.8)                                       | Nausea and vomiting<br>(12.5%), headache (6%),<br>blurred vision (6%), tics (6%)                                                             |
|                                 |                                   |                                                                                 |                                                                       | 4 (25%) due to<br>ADE                                           |                                                        | behavioral outbursts (6%),<br>ataxia(6%), and depression<br>(6%)                                                                             |
| Heyman<br>et al <sup>11</sup>   | 17<br>(1.5-16 yr)                 | Focal onset,<br>tonic,<br>generalized<br>tonic-clonic <sup>*</sup>              | 6 (35%)                                                               | 6 (35%) due to<br>lack of efficacy                              | 12.39<br>(6.7-20)                                      | Nausea (18%), dizziness<br>(18%), restlessness (12%),<br>fatigue (12%), headache<br>(12%), increased appetite<br>(6%), prolonged crying (6%) |
| Rastogi<br>et al <sup>12</sup>  | 16<br>(1-16 yr)                   | Focal, atonic,<br>tonic, tonic,<br>clonic,<br>myolonic,<br>atypical<br>absence* | 8 (50%)                                                               | NR                                                              | 9.4<br>(2.4-19.4)                                      | nausea, vomiting,<br>gastrointestinal intolerance,<br>dizziness, headache,<br>somnolence, facial edema<br>(frequency not specified)          |

Table 2. Pediatric Lacosamide Case Series and Retrospective Studies<sup>8-11</sup>

ADE, adverse drug event; NR, not reported

\* Included patients with Lennox-Gastaut syndrome (LGS)

#### J Pediatr Pharmacol Ther 2012;17(3):211–219

Efficacy and Tolerability of Lacosamide in the Concomitant Treatment of 130 Patients Under 16 Years of Age with Refractory Epilepsy A Prospective, Open-Label, Observational, Multicenter Study in Spain

- Prospective, open-label, observational
- Multicenter study
- 130 patients (6 mo. 16 years)
- 1-2 MKD initial dose to 6.80 ± 2.39 MKD
- Accessed at 3 mo.

#### Result





#### Lacosamide in pediatric and adult patients: Comparison of efficacy and safety

Alberto Verrotti <sup>a,\*</sup>, Giulia Loiacono<sup>a</sup>, Antonella Pizzolorusso<sup>a</sup>, Pasquale Parisi<sup>b</sup>, Oliviero Bruni<sup>b</sup>, Anna Luchetti<sup>b</sup>, Nelia Zamponi<sup>c</sup>, Silvia Cappanera<sup>c</sup>, Salvatore Grosso<sup>d</sup>, Gerhard Kluger<sup>e</sup>, Christine Janello<sup>e</sup>, Emilio Franzoni<sup>f</sup>, Maurizio Elia<sup>g</sup>, Alberto Spalice<sup>h</sup>, Giangennaro Coppola<sup>i</sup>, Pasquale Striano<sup>j</sup>, Piero Pavone<sup>k</sup>, Salvatore Savasta<sup>1</sup>, Maurizio Viri<sup>m</sup>, Antonino Romeo<sup>m</sup>, Paolo Aloisi<sup>n</sup>, Giuseppe Gobbi<sup>o</sup>, Alessandro Ferretti<sup>b</sup>, Raffaella Cusmai<sup>p</sup>, Paolo Curatolo<sup>q</sup>

- Prospective study
- **Group A** ( $4 \le 16$  yr) 1 MKD to 3-12 MKD
- **Group B** (≥ 16 yr) 100 mg/day to 100-600 mg/day
- Uncontrolled generalized and focal epilepsy

#### General efficacy



### Responses by seizure types

#### Table 2

Efficacy by seizure type.

| Seizure type                                                                                | 3-Month follow-up                              |                                        |                                       | 6-Month follow-up                                |                             |                                                  | 12-Month follow-up                    |                                |                             |                                                  |                                                |                                |
|---------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------|-----------------------------|--------------------------------------------------|---------------------------------------|--------------------------------|-----------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------|
|                                                                                             | 100%<br>responders<br>n (%)                    | 50%<br>responders<br>n (%)             | Non-<br>responders<br>n (%)           | Worsening<br>patients<br>n (%)                   | 100%<br>responders<br>n (%) | 50%<br>responders<br>n (%)                       | Non-<br>responders<br>n (%)           | Worsening<br>patients<br>n (%) | 100%<br>responders<br>n (%) | 50%<br>responders<br>n (%)                       | Non-<br>responders<br>n (%)                    | Worsening<br>patients<br>n (%) |
| Generalized<br>Group A (n = 12)<br>Group B (n = 4)<br>Total (n = 16)                        | 1 (8.3%)<br>1 (25%)<br>2 (12.5%) <sup>c</sup>  | 4 (33.3%)<br>-<br>4 (25%)              | 3 (25%)<br>2 (50%)<br>5 (31.2%)       | 4 (33.3%)<br>1 (25%)<br>5 (31.2%) <sup>a,b</sup> | -<br>1 (25%)<br>1 (6.3%)    | 4 (33.3%)<br>-<br>4 (25%) <sup>a</sup>           | 2 (16.7%)<br>2 (50%)<br>4 (25%)       | -<br>-                         | -<br>1 (25%)<br>1 (6.3%)    | 4 (33.3%)<br>-<br>4 (25%) <sup>a</sup>           | 1 (8.3%)<br>1 (25%)<br>2 (12.5%)               | -<br>-                         |
| Focal<br>Group A (n = 19)<br>Group B (n = 10)<br>Total (n = 29)                             | 3 (15.8%)<br>1 (10%)<br>4 (13.8%) <sup>d</sup> | 7 (36.8%)<br>6 (60%)<br>13 (44.8%)     | 8 (42.1%)<br>3 (30%)<br>11 (37.9%)    | 1 (5.3%)<br>-<br>1 (3.5%) <sup>a</sup>           | -<br>-                      | 12 (63.2%)<br>7 (70%)<br>19 (65.5%) <sup>a</sup> | 6 (31.6%)<br>3 (30%)<br>9 (31%)       | -<br>-                         | -<br>-                      | 11 (57.9%)<br>7 (70%)<br>18 (62.1%) <sup>a</sup> | 4 (21.1%)<br>1 (10%)<br>5 (17.2%)              | -<br>-                         |
| Focal evolving to bilateral seizure<br>Group A (n = 7)<br>Group B (n = 8)<br>Total (n = 15) | -<br>-                                         | 5 (71.4%)<br>4 (50%)<br>9 (60%)        | 2 (28.6%)<br>4 (50%)<br>6 (40%)       | -<br>-                                           | -<br>-                      | 3 (42.9%)<br>3 (37.5%)<br>6 (40%)                | 4 (57.1%)<br>4 (50%)<br>8 (53.3%)     | -                              | -                           | 2 (28.6%)<br>2 (25%)<br>4 (26.7%)                | 5 (71.4%)<br>2 (25%)<br>7 (46.7%) <sup>b</sup> | -<br>-                         |
| Mixed<br>Group A (n=21)<br>Group B (n=37)<br>Total (n=58)                                   | -<br>-                                         | 12 (57.1%)<br>18 (48.7%)<br>30 (51.7%) | 7 (33.3%)<br>17 (45.9%)<br>24 (41.4%) | 2 (9.5%)<br>2 (5.4%)<br>4 (6.9%)                 | -<br>-                      | 12 (57.1%)<br>16 (43.2%)<br>28 (48.3%)           | 7 (33.3%)<br>14 (37.8%)<br>21 (36.2%) | -<br>2 (5.4%)<br>2 (3.4%)      | -<br>1 (2.7%)<br>1 (1.7%)   | 11 (52.4%)<br>14 (37.8%)<br>25 (43.1%)           | 8 (38.1%)<br>6 (16.2%)<br>14 (24.1%)           | -<br>-                         |
| Entire study population (n = 118)                                                           | 6 (5.1%)                                       | 56 (47.4%)                             | 46 (39%)                              | 10 (8.5%)                                        | 1 (0.8%)                    | 57 (48.3%)                                       | 42 (35.6%)                            | 2 (1.7%)                       | 2 (1.7%)                    | 51 (43.2%)                                       | 28 (23.7%)                                     | -                              |

 $^{\rm a}~p\,{<}\,0.05,$  for comparison between generalized and focal groups.

 $^{\rm b}~p$  < 0.05, for comparison between generalized and focal evolving to bilateral seizure groups.

 $^{c}$  p < 0.05, for comparison between generalized and mixed groups.

 $^{\rm d}\,p\!<\!0.05$ , for comparison between focal and focal evolving to bilateral seizure groups.

#### Poorer response in generalized group and best response in focal group

### Side effects

- Generally mild
  - Dyspepsia
  - Headache
  - Dizziness, vomiting , irritability
- overall side effect 29.7%
  - Off the study due to SE 3.4%



Original article

Efficacy and safety of lacosamide in infants and young children with refractory focal epilepsy



- < 4 years old</p>
- Focal seizure
- Start at 1-2 MKD increase weekly to maximum dose of 15.5 MKD
- 24 patients

# Result

- At 3 month
  - 10/24 (42%) have > 50% seizure reduction
    - 4 (17%) seizure free
    - 6 (25%) with 50 % reduction
  - 9/24 (37.5%)Unchanged
  - 1/24 (4%) Increased
- More responder in cryptogenic > symptomatic
- 33% have adverse SE (drowsiness, nervousness, vomiting,)
  - Resolve with decreasing dose
  - 17% discontinue due to SE



Acta Neurol Scand 2014: 129: 420–424 DOI: 10.1111/ane.12221

© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

ACTA NEUROLOGICA SCANDINAVICA

#### Efficacy and tolerability of add-on lacosamide in children with Lennox-Gastaut syndrome

- Retrospective
- Multicenter
- Age < 16 yrs
- 18 patients (5.6-15 yrs)
- Atonic/Tonic/Atypical absence/Myoclonic/GTC and Focal seizure

# Result

- 33% show more than 50% reduction in seizure frequency after 9 mo. period
  - Highest in Tonic (31%)
  - Medium in GTC (29%)
  - Lowest in Drop attack (22%)
  - With focal seizure more than 75% reduction in 4/5 patients
- No seizure free
- Increase seizure frequency 17%

#### Status epilepticus



Official Journal of the European Paediatric Neurology Society



#### Original article

# Lacosamide in children with refractory status epilepticus. A multicenter Italian experience

Salvatore Grosso <sup>a,d,\*</sup>, Nelia Zamponi<sup>b</sup>, Arnaldo Bartocci<sup>c</sup>, Elisabetta Cesaroni<sup>b</sup>, Silvia Cappanera<sup>b</sup>, Rosanna Di Bartolo<sup>d</sup>, Paolo Balestri<sup>d</sup>

<sup>a</sup> Pediatric Neurology-Immunology and Endocrinology Unit, University of Siena, Italy

<sup>b</sup> Child Neuropsychiatric Unit, University of Ancona, Italy

<sup>c</sup> Clinical Neurophysiology, University of Perugia, Italy

<sup>d</sup> Department of Pediatrics, University of Siena, Italy

- Use of lacosamide as 4<sup>th</sup> or later AED
- 11 children (7-symptomatic)
- 6 with convulsive and 5 non-convulsive
- Mean bolus dose 8.6 mg/kg
- Effective in 45%
- Seizure terminate within 12 hrs in 3/11

# Rufinamide

- Triazole derivative
- Modulation of sodium channel, in particular, prolongation of the time spent in the inactive state of the channel
- FDA approve of using as adjunctive treatment for patients with Lennox-Gastaut syndrome

# Rufinamide

- Well absorb by oral administration with bioavailability of > 85%
- Absorption decrease progressively with chronic use
- Time to peak 4-6 hrs.
- Increase absorption with food
- Extensively metabolized (mainly with carboxylamidic group)
- Low plasma protein binding (< 35%)

## Drug interaction

- Increase level with the use of VPA
- Decrease level with PB, PHT, CBZ
- Decrease CBZ, LTG,
- Increase level of PB, PHT

| AED | AED               | Rufinamide        |
|-----|-------------------|-------------------|
| PB  | 1                 | $\checkmark$      |
| PHT | 1                 | $\checkmark$      |
| CBZ | $\checkmark$      | $\checkmark$      |
| VPA | $\leftrightarrow$ | $\uparrow$        |
| LTG | $\checkmark$      | $\leftrightarrow$ |
| TPM | $\Leftrightarrow$ | $\leftrightarrow$ |

ARTICLES

Rufinamide for generalized seizures associated with Lennox–Gastaut syndrome

- Double-blind, placebocontrolled, randomized
- 138 patients with LGS (4 yrs to 30 yrs)
- Endpoint:
  - total seizure
  - atonic seizure
  - severity of the seizure
- 28 days



#### Result



### Common side effect

- Somnolence
- Vomiting
- Cautions in Short QT syndrome

Copyright © 2010 The Authors Journal compilation © 2010 Blackwell Munksgaard ACTA NEUROLOGICA SCANDINAVICA

#### Adjunctive rufinamide in Lennox-Gastaut syndrome: a long-term, open-label extension study



**Figure 3.** Comparison of median percentage reduction in total seizure frequency in patients receiving open-label rufinamide who had previously received either rufinamide or placebo for 12 weeks.

**Figure 4.** Response rates and seizure freedom for total and tonic–atonic seizures during the last 12 months of treatment.

# Advantages-Disadvantages

- Efficacy in LGS
- Favorable cognitive profile
- Rare seizure worsening No intravenous formulation
- Mild side effect profile
- Low potential for drug-todrug interactions
- Option for a quick titration when indicated in the clinical setting

- Not enough data on longterm efficacy and safety
- Ineffective in myoclonic seizures
- Only licensed as orphan drug for LGS; expensive
- Few controlled studies in epileptic syndromes other than LGS
- Few pharmacokinetic data, especially in young children

# Childhood indication

- FDA approve in adjunctive treatment in LGS > 4 yrs of age especially in "Drop attack" (atonic and tonic seizure)
- Other use
  - Infantile spasm (Olsen, Epilepsy & Behavior, 2012)
    - 107 patients (17 mo.-23 yrs)
    - Median follow-up 171 day (10-408)
    - Responder rate 53% (median reduction 50%)
    - Side effect 38% (discontinue 18%)
- Focal seizures
- NOT for Dravet syndrome

# Stiripentol

- First "orphan medicine" for severe myoclonic epilepsy in infancy (Dravet syndrome)
- FDA approve in 2008
- Other use
  - Partial seizure
  - Atypical absence

#### Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial

C Chiron, M C Marchand, A Tran, E Rey, P d'Athis, J Vincent, O Dulac, G Pons, and the STICLO study group\*



| Trial | profile |
|-------|---------|
| IIIai | prome   |

|                                 | Stiripentol (n=21)   | Placebo (n=20)  | p*      |
|---------------------------------|----------------------|-----------------|---------|
| Responders (95% CI)             | 15 (71%) (52.1–90.7) | 1 (5%) (0–14·6) | <0.0001 |
| Seizure-free patients (95% CI)  | 9 (43%) (21.9–65.9)  | 0 (0.0-13.9)    | 0.0013  |
| Median (range) monthly          | 5 (0-27)             | 14 (2–23)       | 0.0063  |
| seizures in double-blind period |                      |                 |         |
| Mean change from baseline (%)   | -69 (-50 to -88)     | 7 (25 to -11)   | <0.0001 |
| of seizure frequency (95% Cls)  |                      |                 |         |

There was one drop-out in stiripentol group, due to status, and four drop-outs in placebo group (one for status, two inefficiency, one adverse event). \*Difference between groups. Table 2: **Comparison of groups** 

Chiron, 2000

### Pharmacokinetics

- Nonlinear pharmacokinetics
- Enzyme inhibitor
- Well absorbed after oral administration
- Take with food not with diary products, fruit juice, carbonated drinks
- Peak 1.5 hr with half-life 4.3-13 hrs
- 99% protein bound
- Metabolite in liver and excrete in urine

#### **Doses and Interaction**

- Starting dose: 50 MKD
- Target dose: 100 MKD
- Bid or tid schedule

| AED        | AED               | STP               |
|------------|-------------------|-------------------|
| CBZ        | 1                 | ND                |
| Clonazepam | $\leftrightarrow$ | $\leftrightarrow$ |
| Phenobarb  | ↑                 | $\checkmark$      |
| Valproic   | $\checkmark$      | ↑                 |

### Key message

- Orphan drug for Dravet syndrome
- Disadvantage
  - Nonlinear pharmacokinetics
  - Potent inhibition of liver cytochrome P450 enzymes
  - High protein binding and drug interaction

# Summary

- Newer antiepileptic drugs are now available
- More diverse and new mechanism of AEDs
- Studies are mostly from adult patients
- Two new hopes for devastating epileptic syndrome, LGS and Dravet syndrome
- More works and data are needed in pediatric population