
Highlight in Epilepsy 2013

รศ.นพ. คณิตพงษ์ ปราบพาล

Topic cover

- Classification
- Definition
- Update ILAE evidence review : AEDs monotherapy
- Antiepileptic drugs and suicidal
- Antiepileptic drug and pregnancy
- Adverse drug reaction
- International consensus: classification of hippocampal sclerosis in TLE
- mTOR
- Epileptic surgery: New biomarker
- Epileptic encephalopathy
- Borderland and epilepsy

ILAE Proposal for Revised Terminology for Organization of Seizures and Epilepsies 2010

ILAE Proposal for Revised Terminology for Organization of Seizures and Epilepsies 2010

Electroclinical Syndromes and Other Epilepsies Grouped by Specificity of Diagnosis **Electroclinical syndromes** One example of how syndromes can be organized: Arranged by typical age at onset* Neonatal period Childhood Adolescence - Adult Variable age at onset Infancy - Benign neonatal Febrile seizures*, Febrile Febrile seizures^{*}, Febrile seizures plus (FS+) Juvenile absence epilepsy Familial focal epilepsy seizures[^] seizures plus (FS+) Early onset childhood occipital epilepsy (JAE) with variable foci - Benign familial Benign infantile epilepsy Juvenile myoclonic epilepsy (childhood to adult) (Panaviotopoulos syndrome) neonatal epilepsy Benign familial infantile Epilepsy with myoclonic atonic (previously) (JME) Progressive epilepsy (BFIE) Epilepsy with generalized myoclonus epilepsies (BFNE) astatic) seizures Ohtahara syndrome West syndrome Childhood absence epilepsy (CAE) tonic-clonic seizures alone (PME) - Early Myoclonic Benign epilepsy with centrotemporal spikes Reflex epilepsies Dravet syndrome Autosomal dominant encephalopathy Myoclonic epilepsy in (BECTS) epilepsy with auditory (EME) - Autosomal dominant nocturnal frontal lobe features (ADEAF) infancy (MEI) Other familial temporal lobe Myoclonic encephalopathy epilepsy (ADNFLE) in nonprogressive disorders Late onset childhood occipital epilepsy epilepsies Epilepsy of infancy with (Gastaut type) migrating focal seizures Epilepsy with myoclonic absences Lennox-Gastaut syndrome (LGS) Epileptic encephalopathy with continuous spike-and-wave during sleep (CSWS)+ Landau-Kleffner syndrome (LKS) Distinctive constellations/surgical syndromes Nonsyndromic epilepsies** Distinctive constellations/Surgical syndromes Epilepsies attributed to and organized by **Epilepsies of** - Mesial temporal lobe epilepsy with hippocampal structural-metabolic causes unknown cause sclerosis (MTLE with HS) - Malformations of cortical development Rasmussen syndrome (hemimegalencephaly, heterotopias, etc.) - Gelastic seizures with hypothalamic hamartoma Neurocutaneous syndromes (tuberous sclerosis Hemiconvulsion-hemiplegia-epilepsy complex, Sturge-Weber, etc.)

- Tumor, infection, trauma, angioma, antenatal and

perinatal insults, stroke, etc

- The arrangement of eletroclinical syndromes does not reflect etiology.
- Not traditionally diagnosed as epilepsy
- + Sometimes referred to as Electrical Status Epilepticus during Slow Sleep (ESES)
- ** Forms of epilepsies not meeting criteria for specific syndromes or constellations

Special Article

Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)

Epilepsia 2005; 46: 470-2

*Robert S. Fisher, †Walter van Emde Boas, ‡Warren Blume, §Christian Elger, ||Pierre Genton, ¶Phillip Lee, and **Jerome Engel, Jr.

Epilepsy is a disorder characterized by an enduring predisposition to generate epileptic seizure, and by the neurological cognitive, psychological, and social consequences of this condition.

The definition of epilepsy requires the occurrence of at least one epileptic seizure.

Epilepsy is a <u>disease</u> of the brain defined by any of the following condition:

- 1. At least two unprovoked seizures occurring more than 24 hours apart.
- 2. One unprovoked seizure and probability of further seizures similar to the general recurrence risk after two unprovoked seizure (approximately 75%) or more).
- 3. At least two seizures in a setting of reflex epilepsy.

Epilepsy is considered to be <u>no longer present</u> for individual who had an agedependent epilepsy syndrome but are now past the applicable age or those who have remained seizure-free for at least 10 years off anti-seizure medicines, provided that there are no known risk factors associated with a high probability of further seizure

A 25 year-old man has two unprovoked seizures one year apart

Old definition New definition

Yes No Yes No

A 65 year-old man had a left middle cerebral artery stroke

6 weeks ago and now presented with an unprovoked seizure

With a seizure in this time relation to stroke (or brain infection or brain trauma) literature (<u>Hesdorffer et al. 2009</u>) suggests a high (~ 75%) risk of another unprovoked seizure. Therefore, in the new (but not the old) definition, this man would have epilepsy.

Old definition

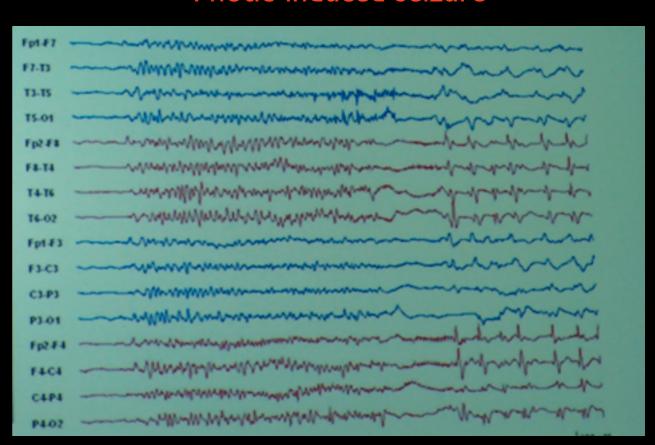
New definition

Yes

No

Yes

No


A 20 year-old man has had 2 seizures 3 day apart while playing a videogame involving flashing lights. There have been no other seizures. EEG shows an abnormal photoparoxysmal response

Photic-induced seizure

Old definition New definition

Yes No Yes No

This man has epilepsy according to the new definition (but not the old), even through the seizures are provoked by lights, since there is an abnormal enduring predisposition to have seizures with light flashes

A 21 year-old man has a focal seizure at age 2 and another at age 3 years.

EEG, MRI, blood test and family history were all unrevealing. He received

antiepileptic drugs from age 3 to age 7 years, when they were discontinued.

There have been no further seizures

Old definition

New definition

Yes

No

Yes

No

According to the new definition, epilepsy is no longer present, since he has more than 10 years seizure-free and off seizure medication. This is not a guarantee against further seizures, but he has a right to be viewed as someone who dose not currently have epilepsy

Possible consequences

Pros

Cons

Closer to clinician view
Support for earlier diagnosis
Encourage disease-modifying therapy
Allows for epilepsy no longer present

May upset those diagnosed sooner May increase stigma for some Makes diagnosis more complex

Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes

Seizure type/epileptic syndrome	Level of efficacy and effectiveness evidence	Antiepileptic drug
Adult with partial-onset seizure	A B C D	Carbamazepine, Levetiracetam, Phenytoin, Zonisamide Valproate Gabapentin, Lamotrigine, Oxcarbazepine, Phenobarbital, Topiramate, Vigabatrin Clonazepam, Primidone
Adult with generalized-onset tonic-clonic seizure	А В С D	None None Carbamazepine, Lamotrigine, Oxcarbazepine, Phenobarbital, Topiramate, Valproate Gabapentin, Levetiracetam, Vigabatrin
Elderly adult with partial-onset seizure	A B C D	Gabapentin, Lamotrigine None Carbazepine Topiramate, Valproate
Children with generalized-onset tonic-clonic seizure	A B C D	None None Carbamazepine, Phenobarbital, Phenytoin, Topiramate, Valproate Oxcarbazepine
Children with partial-onset seizure	A B C D	Oxcarbazepine None Carbazepine, Phenobarbital, Phenytoin, Topiramate, valproate, vigabatrin Clobazam, Clonazepam. Lamotrigine, Zonisamide

Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes

Seizure type/epileptic syndrome	Level of efficacy and effectiveness evidence	Antiepileptic drug
Children with absence seizure	A B C D	Ethosuximide, Valproate None Lamotrigine None
Benign epilepsy with centrotemporal spike	A B C D	None None Carbamazepine, Valproate Gabapentin, Levetiracetam, Oxcarbazepine Sulthiame
Juvenile myoclonic epilepsy	A B C D	None None None Topiramate, Valproate

Epilepsia, 54(1):199–203, 2013 doi: 10.1111/j.1528-1167.2012.03688.x

Antiepileptic drugs and suicidality: An expert consensus statement from the Task Force on Therapeutic Strategies of the ILAE Commission on Neuropsychobiology

*Marco Mula, †Andres M. Kanner, ‡Bettina Schmitz, and §Steven Schachter

*Amedeo Avogadro University, Novara, Italy; †Rush Medical College at Rush University, Chicago, Illinois, U.S.A.; ‡Vivantes Humboldt-Klinikum, Berlin, Germany; and §Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, U.S.A.

FDA	ILAE	
A increased risk of suicide with all AEDs, despite the fact that statistical significance was found in only 2 of the 11 AED studies.	Some not all cab be associated with treatment-emergent psychiatric problems that can lead to suicidal ideation and behavior, the actual suicidal risk is yet to be established, but it seem to be very low.	
Most epilepsy trial included patients taking adjunctive therapy	Clinician should investigate the existence of such risk factors and if necessary, refer the patient for a psychiatric evaluation, but not withhold treatment event in patients with positive suicidal risk	
The assessment of suicidality was based on "spontaneous" reports of patients.	The C-SSRS represents a suitable and reliable instrument to evaluate suicidality.	
Suicidal behavior was greater in certain geographic region.	Data on treatment-emergent psychiatric adverse events need to be collected	

Epilepsia, 54(1):199–203, 2013 doi: 10.1111/j.1528-1167.2012.03688.x

Antiepileptic drugs and suicidality: An expert consensus statement from the Task Force on Therapeutic Strategies of the ILAE Commission on Neuropsychobiology

*Marco Mula, †Andres M. Kanner, ‡Bettina Schmitz, and §Steven Schachter

*Amedeo Avogadro University, Novara, Italy; †Rush Medical College at Rush University, Chicago, Illinois, U.S.A.; ‡Vivantes Humboldt-Klinikum, Berlin, Germany; and §Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, U.S.A.

Table 1. Treatment-emergent psychiatric adverse events of AEDs in patients with epilepsy

Depression	Psychoses	Irritability/Emotion lability
Barbiturates Tiagabine Topiramate Vigabatrin Zonisamide	Ethosuximide Levetiracetam Phenytoin (toxic levels) Topiramate Vigabatrin Zonisamide	Felbamate Lamotrigine Levetiracetam

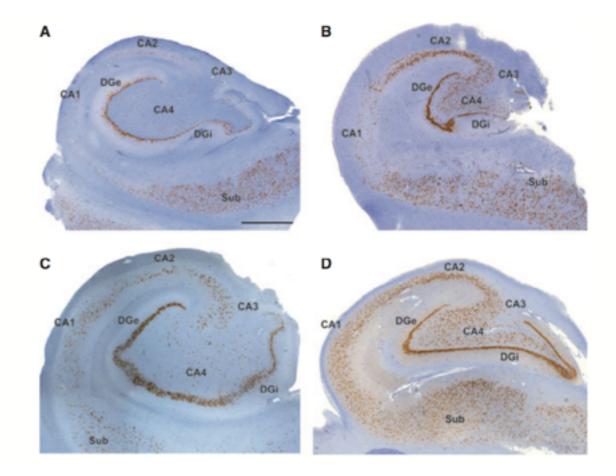
W 🗽 📾 Adverse effects of antiepileptic drugs

Piero Perucca, Frank G Gilliam

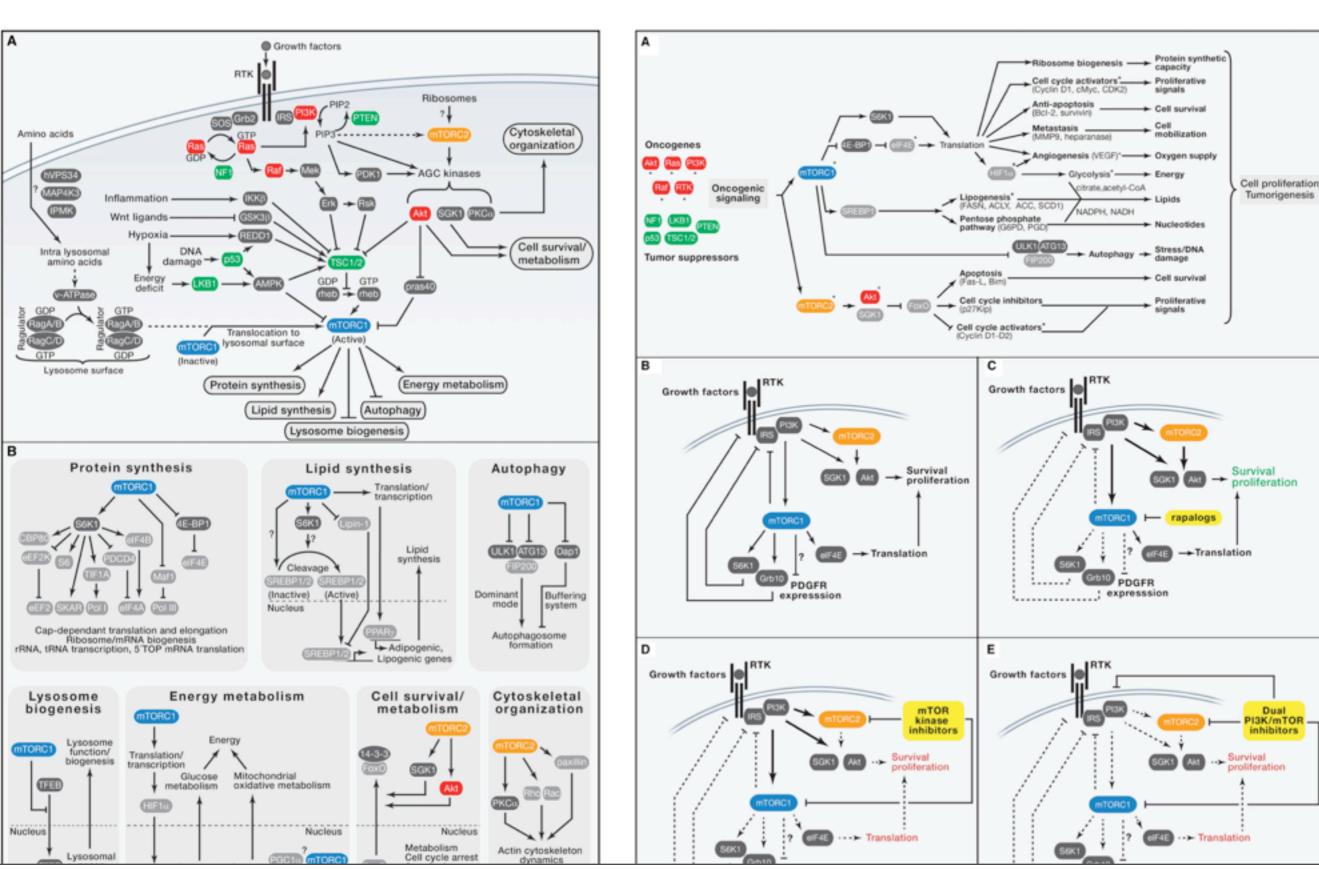
Lancet Neurol 2012; 11: 792-802

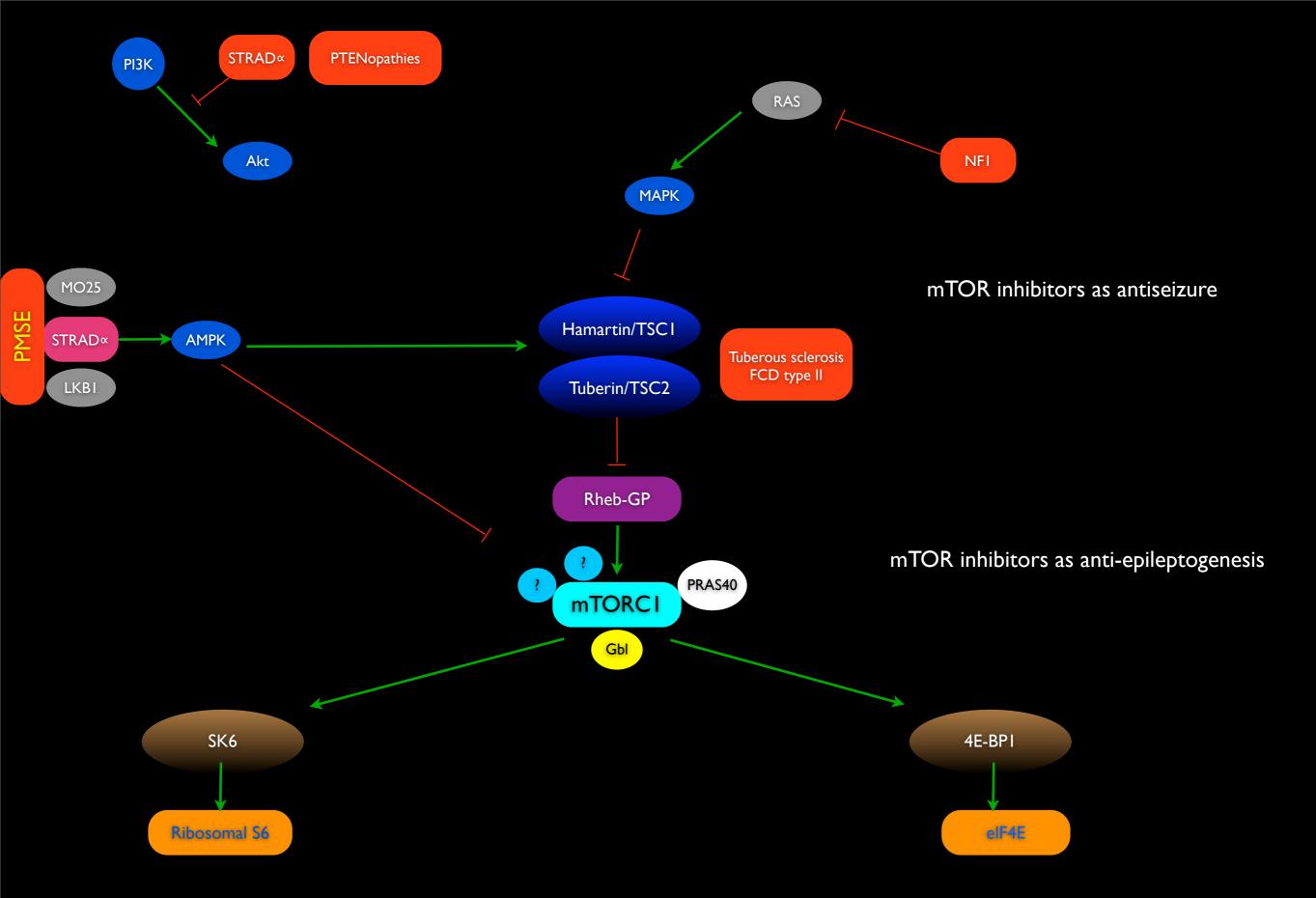
This online publication has been corrected. The corrected version first appeared at thelancet.com/ specialty on August 13, 2012

> Published Online July 24, 2012 http://dx.doi.org/10.1016/ S1474-4422(12)70153-9


	Description	Examples	Prevention	Management	
Type A	Related to the known mechanism of action of the drug; common (1–10%) or very common (>10%); acute; dependent on dose or serum concentration; predictable; reversible	Drowsiness, lethargy, tiredness, fatigue, insomnia; dizziness, unsteadiness, vertigo, imbalance, ataxia, diplopia, tremor; cognitive impairment; irritability, aggressive behaviour, depression; gastrointestinal symptoms; hyponatraemia; paresthesias	Select an antiepileptic drug with a profile of tolerability suitable to the characteristics and preferences of the patient; start at low doses; up-titrate gradually; target the lowest effective maintenance dose	Reduce dose; modify the dosing scheme; discontinue antiepileptic drug if measures to prevent or ameliorate toxicity are ineffective	
Type B	Related to the individual vulnerability (immunological, genetic, or other mechanism); uncommon (0·1–1%) or rare (<0·1%); develop during the first few weeks of treatment; unpredictable; high morbidity and mortality; reversible	Skin rashes, severe mucocutaneous reactions (drug rash with eosinophilia and systemic symptoms, toxic epidermal necrolysis, Stevens-Johnson syndrome); aplastic anaemia, agranulocytosis; hepatotoxic effects, pancreatitis; angle closure glaucoma; aseptic meningitis	Avoid (or use very cautiously) specific antiepileptic drugs in high-risk groups; start at low doses; up-titrate gradually	Discontinue antiepileptic drug promptly; symptomatic or supportive management; substitute antiepileptic drug with least risk for cross-reactivity reactions or worsening of underlying condition	
Type C	Related to the cumulative dose of the drug; common (1–10%); chronic; mostly reversible	Decreased bone mineral density; weight gain, weight loss; folate deficiency; connective tissue disorders; hirsutism, gingival hypertrophy; alopecia; visual field loss	Select an antiepileptic drug with a tolerability profile suitable to the characteristics and preferences of the patient	Symptomatic or replacement treatment (eg, calcium, vitamin D, folic acid) as needed; discontinuation of antiepileptic drug if required	
Type D	Related to prenatal exposure to the drug (eg, teratogenesis) or carcinogenesis; uncommon (0·1–1%); delayed; dose dependent; irreversible	Birth defects; neurodevelopmental delay in the offspring; pseudolymphoma	If possible, avoid valproate, phenobarbital, and polytherapy in women of childbearing potential; aim at low-risk monotherapies at the lowest effective dose before pregnancy; avoid discontinuation or major treatment changes during pregnancy	**	
Type E	Adverse drug interactions; common (1–10%); predictable; reversible	Increased risk of skin rash after adding lamotrigine to valproate; reduced seizure control after adding the combined contraceptive pill to lamotrigine; reduced effectiveness of warfarin after adding carbamazepine; increased risk for CNS neurotoxicity after combination of sodium-channel-blocking antiepileptic drugs	Avoid unnecessary polytherapy; choose concurrent drugs with low potential for adverse drug interactions	Adjust doses according to clinical response and, if necessary, drug concentrations in serum	
Table 3: Ad	Table 3: Adverse effects of antiepileptic drugs based on a modified version of the WHO classification				

International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods


*Ingmar Blümcke, †Maria Thom, ‡§Eleonora Aronica, ¶Dawna D. Armstrong, #Fabrice Bartolomei, **Andrea Bernasconi, **Neda Bernasconi, ††Christian G. Bien, ‡‡Fernando Cendes, *Roland Coras, §§J. Helen Cross, ¶¶Thomas S. Jacques, ##Philippe Kahane, ***Gary W. Mathern, †††Haijme Miyata, ‡‡‡§§§¶¶Solomon L. Moshé, ###Buge Oz, ****Çiğdem Özkara, ††††‡‡‡‡Emilio Perucca, §§§§Sanjay Sisodiya, ¶¶¶Samuel Wiebe, and ####Roberto Spreafico


Table 1. ILAE consensus classification of hippocampal sclerosis

	Subfield pathology patterns of neuronal cell loss and gliosis (in en bloc resected samples)				
Class. a	HS ILAE Type 1	HS ILAE Type 2 "CA1 Predominant"	HS ILAE Type 3 "CA4 Predominant"	No-HS / Gliosis only	
CA1 b	2	1-2	0 - 1	0	
CA2 b	0-2	0-1	0 - 1	0	
CA3 b	0-2	0 - 1	0 - 1	0	
CA4 b	2	0-1	1-2	0	
DG c	0-2	0 - 1	0-2	0 - 1	

mTOR signaling in growth control and disease

Protein synthesis, metabolism, cell growth, cell proliferation, synaptic plasticity ion channel expression and neurogenesis/neuronal death

mTOR inhibitor as Antiseizure

Involved in regulating the ion channel expression

Decrease seizure in TSC, Pten models (Zeng et al., 2008; Kwon et al., 2003; Ljungberg et al., 2009; Sunnen et al., 2011)

pilocarpine, electrical stimulation, kainic acid and symptomatic IS (Huang et al., 2010; Raffo et al., 2011; Harffo et al., 2012)

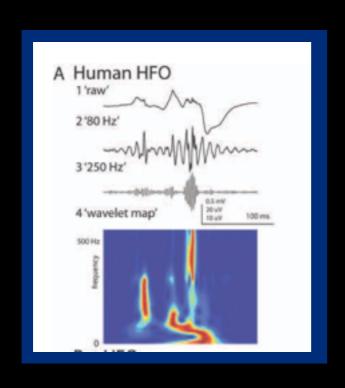
A coup case report decrease in seizure frequency in TSC patients (Muncy et al, 2009; Perek-poinik et al., 2012)

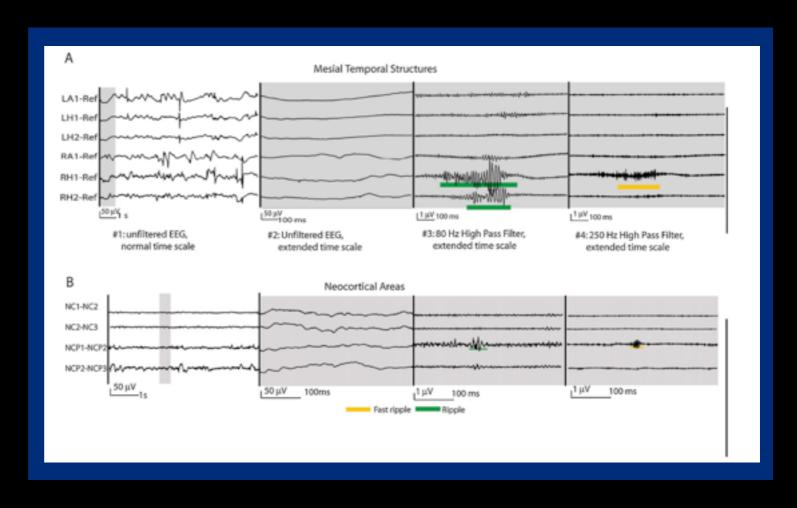
secondary outcome measure treatment SERGAs (Krueger et al, 2010)

Preliminary result 53% (50% seizure reduction), 3/17 seizuree free (Wilfong et al, 2011)

mTOR inhibitor as anti-epileptogenesis

TSC model


Rapamycin before onset seizure can prevent the development of epilepsy of epilepsy and many of the associated pathological and cellular abnormalities, consist with a true anti-epileptogenesis (Zeng et al., 2008; Meikle et al., Goto et al., 2011; Zeng et al., 2011Carson et al., 2012)


Beyond TSC model

Brain injury following SE: inhibit mossy fiber
Traumatic brain injury: neuroprotective effects against
neuronal death

High-frequency oscillations

- New biomarker: epileptogenicity, epileptic surgery (Zijlmans et al, 2012; Jabobs 2012)
- predict good surgical outcome, even better than removal of the ictal
 Onset zone (Jacobs et al, 2010; Haegelen et al., 2013; Fujiwara et al., 2012; Jette et al., 2013))
- iEEG, MEG, EEG
- nipple (80-250 Hz); fast ripple (250-600 Hz)

High-frequency oscillation

• Is it importance to differentiate between ripples and fast ripple?

microelectrodes: fast ripples are most specific for the epileptogenic zone

macoelectrode: both ripple and fast ripple in the evaluation of potential epileptogenic zone

HFOs and the irritative zone

not known whether it is beneficial to distinguish HFOs with and without spike

HFOs and the seizure onset zone

interictal HFOs is that they have been shown to be reliable markers of the seizure onset zone, better than epileptic spike

HFOs and the epileptogenic lesion: tissue's intrinsic epileptogenicity

High-Frequency Electroencephalographic Oscillations

Epilepsia, 53(9):1607–1617, 2012 doi: 10.1111/j.1528-1167.2012.03629.x

FULL-LENGTH ORIGINAL RESEARCH

Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy

*Hisako Fujiwara, *Hansel M. Greiner, †Ki Hyeong Lee, *Katherine D. Holland-Bouley, †Joo Hee Seo, *Todd Arthur, ‡Francesco T. Mangano, §James L. Leach, and *Douglas F. Rose

Epilepsia, 54(5):848–857, 2013 doi: 10.1111/epi.12075

FULL-LENGTH ORIGINAL RESEARCH

High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy

*†Claire Haegelen, *Piero Perucca, *‡Claude-Edouard Châtillon, §Luciana Andrade-Valença, *Rina Zelmann, *Julia Jacobs, †D. Louis Collins, ‡François Dubeau, ‡André Olivier, and *Jean Gotman

ขอบคุณที่ตั้งใจฟังครับ