





# When to start and how to select antiepileptic drugs (AEDs)

Dr. Chusak Limotai, MD., M.Sc., CSCN(C)

## Talk overview

- When to start treatment?
- Which drug?
- Monotherapy
- Combining AEDs (Rational polytherapy)
- Old AEDs versus new AEDs
- Drug level monitoring
- When to discontinue AEDs?

### When to start treatment?

- Correct diagnosis
- Generally start after the second unprovoked seizure
  - First unprovoked seizure: A seizure or flurry of seizures or occurring within 24 hrs in the person > 1 month old of age
  - Epilepsy: 2 or more epileptic seizures occur unprovoked by any immediately identifiable cause

## **ILAE 2014**

- A person is considered to have epilepsy if they meet any of the following conditions.
- At least two unprovoked (or reflex) seizures occurring greater than 24 hours apart.
- 2) One unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years.
- 3) Diagnosis of an epilepsy syndrome
  - Epilepsy is considered to be resolved for individuals who had an agedependent epilepsy syndrome but are now past the applicable age or those who have remained seizure-free for the last 10 years, with no seizure medicines for the last 5 years.

# Cumulative risk of recurrence after a first unprovoked seizure



# Indications to consider antiepileptic drug treatment after the first seizure

- High risk of recurrence
  - abnormal FFG
  - abnormal neurological status
  - prior seizures (previously unreported)
  - possibly: partial seizure with remote symptomatic aetiology
  - possibly: first seizure in sleep
- High risk of complications with recurrence
  - when first seizure presents as status epilepticus
- High risk of injuries with recurrence
  - osteoporosis
  - anticoagulant treatment
  - elderly living alone
- Socioeconomic reasons
  - employment
  - driving

# Factors associated with increased/lower risk

#### Increased risk:

- Adolescence onset
- associated neurological deficits
- occurrence while asleep or awakening
- simple partial seizure/CPS (> GTC)

#### Lower risk:

- seizure occurred within
  3 mo after acute insult
  e.g. head injury, stroke
- alcohol withdrawal

## What are the predictors of recurrence?

Abnormal neurological status and abnormal EEG

| Predictor                             | Pooled RR of recurrence | Pooled risk of 2<br>year recurrence<br>(%) |
|---------------------------------------|-------------------------|--------------------------------------------|
| Abnormal neurological status          | 1.8                     | 57                                         |
| Normal EEG                            | >.M.                    | 77                                         |
| Epileptiform abnormalities in EEG     | <b>2.0 2</b>            | 58                                         |
| Non-epileptiform abnormalities in EEG | 1.3                     | 37                                         |
| Aetiology and EEG combined            |                         |                                            |
| Idiopathic + normal EEG               |                         | 24                                         |
| Idiopathic + abnormal EEG             | 1.9                     | 48                                         |
| Remote symptomatic + normal EEG       |                         | 48                                         |
| Remote symptomatic + abnormal EEG     | 1.4                     | 65                                         |

EEG, electroencephalogram; RR, relative risk.

# IEDs and risk of recurrence (idiopathic epilepsy in adults)



# Treatment of first tonic-clonic seizure does not improve the prognosis of epilepsy

Massimo Musicco, MD; Ettore Beghi, MD; Alessandra Solari, MD; and Francesco Viani, MD; for the First Seizure Trial Group (FIRST Group)\*

#### **Patients immediately treated**

- 87% had no seizures for 1 year
- 68% had no seizures for 2 years

#### Patients treated after seizure recurrence

- 83% had no seizures for 1 year
- 60% had no seizures for 2 years

"Same time-dependent probability of achieving 1 and 2 seizure-free years"

# Which drug?

- Seizure type and epileptic syndrome
- Age and sex
- Associated medical conditions
- Potential side effect on QOL
- Medical expertise
- Regulatory aspects and cost

"Case-by-case basis"

# At first visit prior to starting AEDs

- Nature of disease, its prognostic implications
- Objectives of therapy
- Risks and benefits of treatment
- Alternative therapeutic strategies
- Counseling about marriage, reproduction, driving regulations
- Psychological and social support

## Goals of treatment with AEDs

Complete seizure free without side effects



# Polytherapy in 19th and early 20th century



William Gowers (1881):
"The combinations of bromide with other drugs are of much value in the treatment of epilepsy"
- Other drugs included digitalis, belladonna, cannabis, opium, borax

- Pervasive belief that polytherapy was more efficacious than monotherapy
- Most of the treatments offered at the time were of doubtful antiepileptic efficacy



## <u>Polytherapy</u> Bromide + Digitalis















#### Henri Gastaut (1956);

Identified van Gogh's major illness during the last 2 years of his life as temporal lobe epilepsy precipitated by the use of absinthe in the presence of an early limbic lesion

# Since 1980 "Monotherapy era"

- ✓ equally or higher efficacious than polytherapy
- ✓ better tolerated
- ✓ no drug interaction
- ✓ possibly better compliance
- ✓ better cost effective
- ✓ Particularly desirable in
  - women
  - elderly
  - patients with co-morbid conditions



# Seizure types

| Effective or possibly effective against all seizure types                                | Effective against all seizure types except absence | Effective against partial and GTCs                                               | Effective against absence seizures |
|------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|
| Valproic acid Lamotrigine Benzodiazepines Topiramates Zonisamide Levetiracetam Felbamate | Phenobarbital Primidone                            | Carbamazepine Phenytoin Oxcarbazepine Gabapentin Pregabalin Tiagabine Vigabatrin | Ethosuximide                       |





# **Epileptic syndromes**

 JME: initially presented with absence seizure later developed GTCs and myoclonus



may initially consider starting **VPA** or **LTG** instead of **ETX** 

 If a clear diagnosis cannot be made e.g. only GTCs



wise to choose a broad-spectrum AED

# Seizure aggravation by AEDs

 Increase in seizure frequency or the appearance of a new seizure type

| AEDs                                                                                  | Aggravated seizure types/epileptic syndrome                                                                                                           |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>CBZ, OXC, PHT , TGB, VGB<br/>(drugs for focal epilepsy)</li><li>CBZ</li></ul> | <ul> <li>Myoclonus, absence seizure in IGE/SGE</li> <li>Epileptic negative myoclonus, atonic seizure in BCERS</li> </ul>                              |
| • GBP • PB • LTG • BZD                                                                | <ul> <li>Myoclonus</li> <li>Absence seizure</li> <li>Myoclonus in Dravet's syndrome</li> <li>Tonic seizure/tonic status epilepticus in LGS</li> </ul> |

# Seizure aggravation by AEDs

#### Alternative explanations

- spontaneous fluctuation

(need adequate baseline frequency)

- known seizure aggravators

(e.g. sleep deprivation, alcohol)

- drug interactions

(lowering the level of the baseline effective AEDs)

- noncompliance
- development of drug resistance

#### Mechanisms

(speculative and unproven)

- overdosage (CBZ)
- metabolic derangement (hyponatremia in CBZ/OXC)
- varying effects of NT facilitation in different epileptic syndromes
- drug interactions
- sedation (tonic seizure in LGS)

"If possible, continue AED until it is clear that the seizure increase is not transient"

## Age and sex

### Age

- VPA-induced liver toxicity in children < 2 yrs</li>
- PHT-induced acne, hirsutism, gum hypertrophy and coarsening of facial features when taking during childhood: consideration against the first-line use of PHT in children and young females
- LTG/GBP comparably effective as CBZ, but better tolerable in elderly

#### Sex

- VPA-induced teratogenicity in childbearing-age women
- CBZ, PHT, PB, Primidone, OXC, TPM ≥ 200 mg/d (enzyme-inducing AEDs): increase metabolism of OCP (decrease efficacy)

## Associated medical conditions

- AEDs benefit other conditions
  - VPA, TPM, GBP
  - ✓ migraine
  - GBP, PGB, CBZ, OXC, LTG
  - ✓ neuropathic pain/ post-stroke pain
  - CBZ, OXC, VPA, LTG
  - ✓ mood stabilizer

- AEDs used in specific conditions
  - LVT, GBP, PGB
  - ✓ hepatic impairment
  - ✓ adjusted dose in renal insufficiency /supplement if dialysis
  - LVT, GBP, PGB, LCM
  - ✓ HIV taking ARV (may consider VPA, LTG, but may need to increase LTG dose; may need to reduce ARV dose if taking VPA)
  - VPA, LVT, GBP, PGN
  - ✓ low risk of hypersensitivity
  - LTG, GBP
  - ✓ elderly

## Associated medical conditions

#### Avoidance

- VPA, CBZ, GBP, PGB, RTG (wt gain)
- ✓ avoid in obese pts
- TPM, ZNM
- ✓ not be 1<sup>st</sup> line in pts with renal calculi
- Enzyme-inducing AEDs
- ✓ avoid in pts with chronic medical conditions

#### Potential side effects

- LVT (PB in children)
- ✓ produce irritability
- TPM, PB, Primidone, VGB
- ✓ cause depression
- LTG, FBM (stimulant):
- ✓ cause anxiety and insomnia

## CASE 1

- 18 yo gentleman, university student, BW 86 kg
- Seizure started at age 17 yrs
- Seizure types:
  - ➤ Vocalization with GT/GTC, duration 5 min, 7 episodes in life since onset (Dec 2012), Last episode 2 wks ago
- Medicine: TPM 50 mg BID from another hospital
- EEG, MRI: normal
- Co-morbidity
  - > Difficulties with word finding and memory since taking TPM
- Allergic to sulfa drug (face swelling)

## Considerations

- Seizure type and epileptic syndrome
- Age and sex
- Associated medical conditions
- Potential side effect on QOL
- Medical expertise
- Regulatory aspects and cost

# Which drug?

### Broad spectrum

Valproic acid

Lamotrigine

Benzodiazepines

Phenobarbital

Topiramates

Levetiracetam



VPA, LVT



**LVT** 

Narrow spectrum (focal epilepsy is still possible)

Carbamazepine

Phenytoin

Oxcarbazepine

Gabapentin

Pregabalin

HLA-B\*1502 requested and revealed positive result



GBP PGN

## **Effectiveness of first AED**

TABLE 2. SUCCESS OF ANTIEPILEPTIC-DRUG REGIMENS IN 470 PATIENTS WITH PREVIOUSLY UNTREATED EPILEPSY.

| VARIABLE                                                   | No. (%)  |
|------------------------------------------------------------|----------|
| Response to first drug                                     | 222 (47) |
| Seizure-free during continued therapy<br>with first drug   | 207 (44) |
| Remained seizure-free after discontinuation of first drug  | 15 (3)   |
| Response to second drug                                    | 61 (13)  |
| Seizure-free during monotherapy with second drug           | 41 (9)   |
| Remained seizure-free after discontinuation of second drug | 20 (4)   |
| Response to third drug or multiple drugs                   | 18 (4)   |
| Seizure-free during monotherapy with third drug            | 6 (1)    |
| Seizure-free during therapy with two drugs                 | 12(3)    |
| Total                                                      | 301 (64) |

#### Seizure-free for at least 1 yr

- 1<sup>st</sup> drug: 47%

- 2<sup>nd</sup> drug mono: 13%

- 3<sup>rd</sup> drug mono: 1%

- two drugs: 3%

Medically controlled: 64%

Medically refractory: 36%

## Substitution Vs add-on after the first drug fails



No significant difference in efficacy and intolerable side effects observed between alternative monotherapy and add-on therapy



More pts become seizure-free in combination between sodium channel blockers and a drug with multiple mechanisms as opposed to other combinations

## Early rational combinations is possible

- Explosion of new AEDs with better tolerability
- Less drug interactions
- Mechanistic diversity of new AEDs

ILAE definition (2009)

**Drug-resistant (refractory) epilepsy** as "a failure of adequate trials of two tolerated and appropriately chosen and used AED schedules (whether as monotherapies or incombination) to achieve sustained seizure freedom"



### **AED** mechanism of action

Different mechanistic groups suitable for combination therapy.

#### 1Sodium channel blockers

- (a) Fast-inactivated state—phenytoin, carbamazepine, lamotrigine, oxcarbazepine, eslicarbazepine
  - (b) Slow-inactivated state-lacosamide

#### 2Calcium channel blockers

- (a) Low voltage activated channel-ethosuximide
- (b) High voltage activated channel-gabapentin, pregabalin

#### 3GABA-ergic drugs

- (a) Prolongs chloride channel opening-barbiturates
- (b) Increased frequency of chloride channel opening-benzodiazepines
- (c) Inhibits GABA-transaminase-vigabatrin
- (d) Blocks synaptic GABA reuptake-tiagabine

4Synaptic vesicle protein 2A modulation—levetiracetam

5Carbonic anhydrase inhibition—acetazolamide

6Multiple pharmacological targets—sodium valproate, felbamate, topiramate, zonisamide, rufinamide

# Rational polytherapy

- Rational combinations
  - ✓ evidence is still lacking
  - ✓ common sense: combine with different, perhaps multiple mechanisms of action
  - √ "LTG + VPA": synergism

#### Avoidance

✓ similar mechanisms with similar side effects profiles

- CBZ + LTG - CBZ + LCM

- OXC + LCM - LTG + LCM

- ✓ certain combinations produce more side effects
  - PB + VPA: sedation, weight gain
  - PHT + CBZ: dizziness, diplopia
  - VPA + LTG: dizziness, increased risk of SJS (but very efficacious in some patients)

# LTG dosing

- LTG added to enzyme-inducing AEDs
- Week 1 and 2: 50 mg/day
- Week 3 and 4: 100 mg/day
- Increase by 100 mg/day every 1-2 weeks
- Usual targeted dose: 300-500 mg/D

- LTG added to a regimen containing VPA
- ➤ Week 1 and 2: 25 mg AD
- ➤ Week 3 and 4: 50 mg/day
- Increase by 25-50 mg/day every 1-2 weeks
- Usual targeted dose: 100-400 mg/D (if adding to VPA alone: usual targeted dose at 100-200 mg/day)

## **Old versus New AEDs**

- New AEDs which shown similar efficacy and equal or better tolerability than old AEDs in focal epilepsy
  - ✓ LTG
  - ✓ OXC
  - ✓ ZNM
  - ✓ LVT
- New AEDs which shown inferior efficacy to CBZ in focal epilepsy
  - ✓ VBG
  - ✓ TGB
  - ✓ GBP
- LTG, TPM are inferior to VPA in treating generalized epilepsy

- Advantages of new AEDs
- ✓ Comparable efficacy with old AEDs (inconclusive one AED is more or less effective)
- ✓ Mostly better tolerability
- ✓ Less drug interactions (much less or no protein binding/ most drugs are not hepatic metabolism)

Brodie MJ et.al; Neurology 2012 Marson AG et.al; Lancet 2007 Kalviainen R et.al; Arch Neurol 1995 Mattson RH et.al; NJEM 1992

# Drug level monitoring

- "Therapeutic range": The plasma concentration at which most patients respond
- ➤ Therapeutic decisions must be based primarily on direct evaluation of clinical response rather than drug measurement alone
- > AED therapy can often be optimized on purely clinical grounds

# **Drug level monitoring**

#### Indications

- To minimize the difficulties in dosage adjustment, particularly in pts with polytherapy
- 2) The presence of physiological or pathological conditions
- 3) Establish a DDx of drug toxicity
- 4) When poor compliance is suspected
- 5) Critically-ill pts for whom clinical toxicity cannot be evaluated
- 6) Individualized therapeutic drug concentration

## When to discontinue AEDs?



 After a seizure, risk of a seizure in the next year – 50%
 After 1-year seizure free – 20%
 After 4-5 years seizure free – 10%

"The longer is the remission, the less likely is subsequent recurrence"

- Considering AED discontinuation
  - ✓ Adults: 2-5 yrs after seizure remission

# Some factors adversely affect the risk of seizure relapse after AED discontinuation

- ✓ Short duration of seizure freedom prior to drug withdrawal
- ✓ Epilepsy with onset in adolescence or adulthood
- ✓ JME
- ✓ Remote symptomatic epilepsy
- ✓ Hx of myoclonic seizures
- ✓ Hx of multiple seizure types
- ✓ Hx of primary or secondarily GTC
- ✓ Prolonged period before achieving seizure control

- ✓ Seizure while on treatment
- ✓ Seizure control requiring multiple drug therapy
- ✓ Abnormal EEG (?)
- ✓ Learning disability
- Associated neurological handicaps
- ✓ Previous failed attempts to stop medication

# How do we practice?

#### Increased risk for relapse

- JME
- Adolescent or adult onset
- Focal epilepsy (semiology, EEG, imaging)
- Associated neurological deficit/mental retardation
- Previous failed attempts to stop medication
- Previous multiple seizure types/multiple AEDs



If seizure relapse, greater psychosocial impact in adults than children



Most of self-remission epileptic syndromes are in childhood (CAE, BCERS)

# How do we practice?

### Discussion with the patient is the key!!!

- ✓ Provide statistic evidence to the patient
- ✓ Longer seizure remission is better (2-5 yrs)
- ✓ Balance risk of adverse effect associated with relapse of seizure and AED side effects
- Mild, brief, focal seizure, nocturnal occurrence is preferable to consider discontinuing the AEDs
- ✓ Clinical decision depends upon the patient
- ✓ If seizures recur after AED discontinuation, reinstitution of treatment leads to a good outcome, with -90% of patients again attaining another 2-year remission.







Chulalongkorn Comprehensive

Epilepsy

Centre