When to start &

How to select AEDs

Pasiri Sithinamsuwan, MD

Division of Neurology, Phramongkutklao Hospital

Concepts of medical treatments

Treatment Initiation

- Consider other options if seizures are provoked
- Balance risks between recurrent seizures and adverse events of AEDs
 - Frequency of seizures and risk of recurrent
 - Psychosocial consequences of further seizures
 - Avoid AEDs when diagnosis is in doubt
- AED do not prevent development of epilepsy
- Expectations should be modest (50%)

First seizure, evaluate high recurrence risk

- A very high risk of recurrence
 - Examples
 - A single seizure occurring at least a month after a stroke
 - A child with a single seizure conjoined with a structural or remote symptomatic etiology and an epileptiform EEG study
 - A patient in whom diagnosis of a specific epilepsy syndrome associated with persistent threshold alteration can be made after the occurrence of a single seizure
 - A first seizure might present present as status epilepticus

Consider (a case-by-case basis)

- Seizure type, syndromic form
- Patient characteristics; age, gender. comorbidities
- Efficacy and side effect profile
- Dosing schedule, drug interaction
- Medical expertise
- Cost, ED drug (national formulary)

Ideal properties for an easy-to-use antiepileptic drug

Broad spectrum

No tolerance

High efficacy

No withdrawal seizures

Good tolerability

 Favorable pharmacokinetics (linear kinetics, T1/2 for 1-2 daily dosing)

No risk of allergic or idiosyncratic reactions including teratogenicity

Fast and easy dose escalation rate

Low interaction potential

- Availability of convenient formulation (syrup, parenteral)
- Low variability in dosage requirements
- Low cost, ED

Old (standard) AEDs

- Phenobarbital
- Phenytoin
- Carbamazepine
- Valproate
- Benzodiazepines

New and newer drugs

- Levetiracetam
- Lacosamide Brivaracetam
- Ganaxalone

- Lamotrigine
- Zonisamide
- Carisbamate
- Retigabine

- Topiramate
- Vigabatrin
- Eslicarbazepine
- Rufinamide

- Gabapentin
- Felbamate
- Fluorofelbamate Perampanel

Pregabalin

Stiripentol

Oxcabazepine

A new antiepileptic medication

- To change of epileptic drug target
- In poly-therapy: try using multiple actions
- Using in chronic epilepsy (> 5yr)
 - 17%: seizure freedom
 - 25%: seizure 50-99% reduction

A new antiepileptic medication

- Evidence level A
 - Levetiracetam (1,000-3,000 mg/d)
 - Lamotrigine (300-500 mg/d)
 - Topiramate (300-1,000 mg/d)
 - Gabapentin (600-1,800 mg/d)
 - Zonisamide (100-400 mg/d)

Main mechanisms of AEDs

- "A decrease in neuronal excitability"
 - Increased GABAergic
 - Decreased glutamatergic neurotransmission
 - Inhibition of voltage-gated ion channels
 - Modifications of intracellular signaling pathways

Newer medications: drug profiles

- Many mechanism of action (board spectrum)
- Same or better efficacy
- Better drug profile
- Less bound form
- Less side effect
- Less drug interaction

Antiepileptic Drugs and their Molecular Targets

Drug	Sodium Channels	Calcium Channels	GABA System	Glutamate Receptors	
Group A (Ion Channel)					
Phenytoin	Х				
Carbamazepine	Х				
Lamotrigine	Х	HVA			
Group B (Mixed Mechanisms)					
Zonisamide	Х	T-Type			
Valproate	Х	T-Type?	↑ GABA turnover		
Topiramate	Х	HVA	GABA _A R	KA/AMPA	
Phenobarbital		HVA	GABA _A R	AMPA	
Levetiracetam (SV2A)		HVA	?	?	
Ethosuximide	?	T-Type			
Group C (GABA-urgic)					
Benzodiazepines			GABA _A R		
Gabapentin		HVA∞28	GABA turnover		
Pregabalin		HVA∞28	GABA turnover		F
Vigabatrin			GABA-T		F

HVA: high voltage activated
Rogaswski, M., Nat
Rev 2004; 5: 1 - 13

Drug	Partial- Onset Seizures	Primary GTC Seizure	Absence Seizure	Myoclonic seizure	Infantile Spasms	Lennox- Gastaut syndrome	
Group A (Ion Channel)							
Phenytoin							
Carbamazepine/Oxocarb							
Lamotrigine							Legend
Zonisamide							Efficacy results from randomized
Group B (Mixed mechanisms)							controlled trials, generally accepted utility
Valproate							Less extensive base of evidence
Topiramate							Evidence of lack of efficacy or
Phenobarbital							worsening
Benzodiazepines							
Levetiracetam							
Ethosuximide							
Group C(GABA-urgic)							
Gabapentin							
Pregabalin							
Vigabatrin							Rogaswski, M., Nat Rev 2004; 5: 1 - 13

ADVERSE EFFECTS OF AEDS

Early-Onset Adverse Effects

	CBZ	CLB	ETS	GBP	LEV	LTG	охс	PGN	РВ	PHT	TPM	VPA	VGB	ZNS
Somnolence														
Dizziness														
Seizure aggravation														
GI														
Liver failure														
Rash														

Minimally Increased risk in clinical use			
Risk higher than minimal for AEDs as shown above in clinical use			
Highest risk among AEDs in clinical use			

Late-Onset Adverse Effects

	Late-Offset Adverse Lifects													
	CBZ	CLB	ETS	GBP	LEV	LTG	охс	PGN	РВ	PHT	TPM	VPA	VGB	ZNS
Sedation														
Encephalopathy														
Depression														
Behavioral problems														
Psychotic episodes														
Leukopoenia														
Aplastic anemia														
Thrombopenia														
Megaloblastic anem.														
Pancreatitis														
Nephrolithiasis														
Osteoporosis														
Hyponatremia														
Weight gain														
Weight loss														
Cognition impaired														
Teratogenicity														
Summary	9	8	10	5	3	4	6	4	14	13	9	9	12	9
Minimally Increased risk in clinical use														

Risk higher than minimal for AEDs as shown above in clinical use

Highest risk among AEDs in clinical use

Source: C.E. Elger, D. Schmidt / Epilepsy & Behavior 12 (2008) 501-539

Therapeutic considerations

- First lines for generalized epilepsy and partial epilepsy
- Partial Seizures:
 - Newer AEDs as efficacious as traditional AEDs (except GBP), but are more tolerable and less enzyme inducing
- Generalized SZs:
 - Vaproic acid, lamotrigine, levetiracetam, topiramate, clobazam
 - Ethosuximide (absence only)
 - GBP, CBZ, OXC, PHT may induce myoclonic seizures

Epilepsia, 54(3):551–563, 2013 doi: 10.1111/epi.12074

SPECIAL REPORT

Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes

*Tracy Glauser, †Elinor Ben-Menachem, ‡Blaise Bourgeois, §Avital Cnaan, ¶Carlos Guerreiro, #Reetta Kälviäinen, **Richard Mattson, ††Jacqueline A. French, ‡‡Emilio Perucca, §§Torbjorn Tomson for the ILAE Subcommission on AED Guidelines

*Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A.; †Institution for Clinical Neuroscience, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; ‡Department of Neurology, The Children's Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A.; §Division of Biostatistics and Study Methodology, Center for Translational Science, Children's National Medical Center, Washington, District of Columbia, U.S.A.; ¶Department of Neurology, University of Campinas (UNICAMP), Hospital das Clínicas, Campinas, Sao Paulo, Brazil; #Department of Neurology, Kuopio Epilepsy Center, Kuopio University Hospital, Kuopio, Finland; **Department of Neurology, Yale University School of Medicine, Yale New Haven Hospital, New Haven, Connecticut, U.S.A.; ††Comprehensive Epilepsy Center, New York University Langone Medical Center, New York, New York, U.S.A.; ††Clinical Pharmacology Unit, Institute of Neurology, IRCCS C. Mondino Foundation, University of Pavia, Pavia, Italy; and §§Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden

Evidence-Based Guidelines for the Treatment of Epileptic Seizures with AEDs

- Optimal initial monotherapy for patients with newly diagnosed or untreated epilepsy
- ILAE multi-countries Team
 - Epileptologists
 - Clinical pharmacologists
 - Statistician
 - Methodologist

A prospective, randomized, controlled clinical trial (RCT) or meta-analysis of RCTs, in a representative population that meets all six criteria:

Primary outcome variable: efficacy or effectiveness

Treatment duration: \geq 48 weeks

Study design: double blind

Design:

For superiority trials: superiority demonstrated For noninferiority trials or failed superiority trials: the study treatment's efficacy/effectiveness lower limit (95% confidence interval) is above a 20% lower boundary relative to the adequate comparator's point estimate of efficacy/effectiveness using a per-protocol study population (for age/seizure type subgroups).

Study exit: Not forced by a predetermined number of treatment emergent seizures

Appropriate statistical analysis

II An RCT or a meta-analysis meeting all the class I criteria except that

Treatment duration: \geq 24 weeks but <48 weeks OR

Design: For noninferiority trials or failed superiority trials: the study treatment's efficacy/effectiveness lower limit (95% confidence interval) is between the 21% and 30% lower boundary relative to the adequate comparator's point estimate of efficacy/effectiveness using a per-protocol study population (for age/seizure type subgroups)

An RCT or a meta-analysis not meeting the criteria for any class or class II category. Examples include: An open-label study A study with a forced exit criterion A failed double-blind superiority study, where data from the study's "per-protoco" population (for age/seizure type subgroups) is not provided A prespecified noninferiority study or a failed double-blind superiority study, where the study treatment's efficacy/effectiveness lower limit (95% confidence interval) is below the 30% lower boundary relative to the adequate comparator's point estimate of efficacy/effectiveness using a per-protocol study population (for age/seizure type subgroups) For noninferiority studies, lack of using an adequate comparator when one exists ٧ Evidence from nonrandomized, prospective, controlled or uncontrolled studies, case series, or expert reports

Table 3. Relationship between clinical trial ratings, level of evidence, and conclusions

Combination(s) of clinical trial ratings	Level of evidence	Condusions
I Class I studies or meta-analysis meeting class I criteria sources OR 2 Class II studies	A	AED established as efficacious or effective as initial monotherapy
I Class II study or meta-analysis meeting class II criteria	В	AED probably efficacious or effective as initial monotherapy
≥ 2 Class III double-blind or open-label studies	С	AED possibly efficacious or effective as initial monotherapy
I Class III double-blind or open-label study OR ≥ I Class IV clinical studies OR Data from expert committee reports, opinions from experienced clinicians	D	AED potentially efficacious or effective as initial monotherapy
Absence of directly applicable clinical evidence upon which to base a recommendation	E	No data available to assess if AED is effective as initial monotherapy
Positive evidence of lack of efficacy or effectiveness based on class I to IV studies OR Significant risk of seizure aggravation based on class I to IV studies	F	AED established as ineffective or significant risk of seizure aggravation

Recommendation (Based on efficacy and effectiveness data only)

Evidence Level	Conclusions	Recommendation
А	AED established as efficacious or effective as initial monotherapy	First line monotherapy
В	AED probably efficacious or effective as initial monotherapy	First line monotherapy
С	AED possibly efficacious or effective as initial monotherapy -	Alternative first line monotherapy
D	AED potentially efficacious or effective as initial monotherapy	Weak efficacy
E	No data available to assess if AED is effective as initial monotherapy	No data
F	AED established as ineffective or significant risk of seizure aggravation	Should not be used for initial monotherapy

AEDs for

Adults with partial-onset seizures

Elderly with partial-onset seizures

Adults with generalized-onset tonic-clonic seizures

JME

Partial Seizures: Adults recommendations

Level	AEDs
Α	CBZ, PHT, LEV, ZNS
В	VPA
С	GBP, LTG, OXC, PB, TPM, VGB
D	CZP, PRM
E	Others
F	None

Partial Seizures: Elderly recommendations

Level	AEDs
Α	GBP, LTG
В	None
С	CBZ
D	TPM, VPA
E	Others
F	None

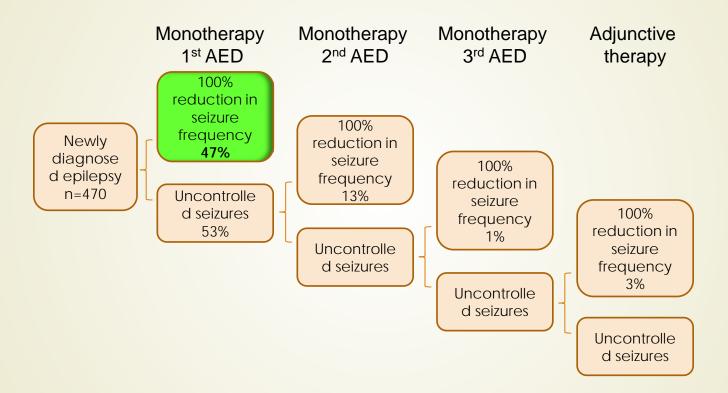
Generalized onset Tonic Clonic Seizures: Adults Recommendations

Level	AEDs
Α	None
В	None
С	CBZ*, PHT*, LTG, OXC, PB, PHT, TPM, VPA
D	GBP, LEV, VGB
E	Others
F	None

^{*=}may aggravate tonic clonic seizures and more commonly other generalized seizure types, should be used with caution

Juvenile Myoclonic Epilepsy: Adult Recommendations

Level	AEDs
Α	None
В	None
С	None
D	TPM, VPA (ZNS, CZP, LTG*, LEV)
E	Others
F	CBZ*, GBP, OXC*, PHT*, TGB, VGB


^{*}may aggravate myoclonic seizure types, should be used with caution

Seizure type or epilepsy syndrome	Class I studies	Class II studies	Class III studies	Level of efficacy and effectiveness evidence (in alphabetical order)
Adults with partial-onset seizures	4	I	34	Level A: CBZ, LEV, PHT, ZNS Level B: VPA Level C: GBP, LTG, OXC, PB, TPM, VGB Level D: CZP, PRM
Children with partial-onset seizures	I	0	19	Level A: OXC Level B: None Level C: CBZ, PB, PHT, TPM, VPA, VGB Level D: CLB, CZP, LTG, ZNS
Elderly adults with partial-onset seizures	I	I	3	Level A: GBP, LTG Level B: None Level C: CBZ Level D: TPM, VPA
Adults with generalized onset tonic-clonic seizures	0	0	27	Level A: None Level B: None Level C: CBZ, LTG, OXC, PB, PHT, TPM, VPA Level D: GBP, LEV, VGB
Children with generalized-onset tonic-clonic seizures	0	0	14	Level A: None Level B: None Level C: CBZ, PB, PHT, TPM, VPA Level D: OXC
Children with absence seizures	ı	0	7	Level A: ESM, VPA Level B: None Level C: LTG Level D: None
Benign epilepsy with centrotemporal spikes (BECTS)	0	0	3	Level A: None Level B: None Level C: CBZ, VPA Level D: GBP, LEV, OXC, STM
Juvenile myoclonic epilepsy (JME)	0	0	1	Level A: None Level B: None Level C: None Level D: TPM, VPA

Concepts of medical treatment

- Minimally effective dose → Maximally tolerated dose
- Sequential monotherapy
 - Ability of seizure control
 - Tolerability, toxicity, drug interaction
 - Compliance, cost
- Polytherapy (adjunctive treatment)
 - Same or "different" mechanisms of action
- Rational polytherapy
- Special considerations
 - Young, elderly, females conceptual age, pregnancy, specific medical conditions

Monotherapy

47% of the newly diagnosed epileptic patients achieved 100% reduction in seizure frequency with their first AED

The chance to be seizure free with

■ 1st AED: 61.8%

■ 2nd AED: 41.7%

- 5th AED : 16.6%
- ► 6th AED : 0%

Administration

- Enteral: tablet, capsule, syrup
- Parenteral: IM, IV
- Other routes: buccal, intranasal, per-rectal
- Half-life, frequency of treatment
- Control released formulation
- Generic or original

Follow up plans

- Efficacy: seizure frequency (seizure diary)
- Side effects (tolerability)
- Quality of life
- Monitoring: blood level, EEG, CBC, Na, Cr, LFT
- Beware "phenomenon of regression to the mean"
 - Wide fluctuations in seizure frequency over time
 - Exacerbation-spontaneous amelioration

Prognostic groups

- 1) Spontaneous remission (20-30%)
 - Benign epilepsy of childhood with centrotemporal spikes (BECT)
 - Childhood absence epilepsy (CAE)
- 2) Remission on AEDs (20-30%)
 - Most focal epilepsy
 - Juvenile myoclonic epilepsy (JME)**
- 3) Persistent seizure with AEDs (30-40%)
 - Refractory patients
 - An increase risk of psychosocial and medical morbidities and mortality

Concerns

Precipitating factors

- Identify and avoid precipitating factors
 - Miss tablets (poor compliance)
 - Excessive sleep deprivation
 - Some photosensitive epilepsies
 - Intermittent flashing lights, certain video game
 - Excessive alcoholic drinking
 - Stress, fever, etc.

Precaution

- Driving
- Swimming
- Heights
- Some work environments
- Bath as opposed to shower

Summary

- The most important is to diagnose correctly
- Plans of initial management both pharmacological and nonpharmacological approaches are essential
- Evaluation and prompt treatments including using either standard or new AEDs should be done on a case-by-case basis
- Identify refractory epilepsy case and consider refer to Epilepsy centers at the proper time
- Some special conditions need to consider

