Tailoring therapy to optimize care for Epilepsy

Dr Tim Wehner

National Hospital for Neurology and Neurosurgery

London, UK

- For discussion only -

Disclosures

Session (travel expenses) sponsored by Pfizer

Premature mortality in epilepsy

Premature mortality in epilepsy and the role of psychiatric comorbidity: a total population study

Seena Fazel, Achim Wolf, Niklas Långström, Charles R Newton, Paul Lichtenstein

Lancet 2013; 382: 1646-54

- Study of all people in Sweden diagnosed with epilepsy 1954 -2009 (n=70000), matched to up to 10 age- and sex-matched controls and unaffected siblings, followed up to the age of 56 years old
- Possible due to linkage of several national databases (census, patient register, cause of death register, multi-generation register) through unique national identification number
- Key findings:
- Mortality in people with epilepsy increased >10x after controlling for age, sex, income, marital, and immigration status
- Mortality increased for internal and external causes
- Ratios of psychiatric comorbidities 3-5x elevated in people with epilepsy (depression, alcoholism, substance misuse)
- Very high effect of psychiatric comorbidity on odds ratio for external causes of death

Comorbidities in epilepsy

- Diabetes type I (10 fold increase in NHNN cohort)
- Maternal mortality (11 x increase) + morbidity (preeclampsia, C-section, prolonged stay, 1-2 x increase)

Personal Impact of Epilepsy Scale

Category "Seizures"	Category "Side effects"	Category "Comorbidities"
1 Seizure recency	10 Nr of medications	17 Depression
2 Severe seizure recency	11 Anger / aggression	18 Anxiety
3 Seizure severity	12 confusion / memory	19 Thinking / memory
4 Seizures with lost awareness	13 Physical problems	20 Work / school problems
5 Seizures bothersome	14 Tiredness	21 Social limits
6 Seizure warning	15 Sleep	22 Transportation limits
7 postictal symptoms	16 Headache€	23 Fear
8 Seizure related injuries		24 Cost
9 Seizure clusters		

25 Overall quality of life

- tool to quantify the impact of epilepsy longitudinally
- may help direct treatment decisions,
 especially in clinical settings with little time
- "the stroke scale for epilepsy"?

Predictors for pharmacoresistance

- Presence of multiple seizure types
- Etiology
- Positive family history
- Number of seizure before treatment
- Multifocal EEG abnormalities
- Inadequate response to initial therapy
- History of status epilepticus
- ALL UNMODIFIABLE

Predictors for pharmacoresistance

- Suboptimal AED choice
- Adherence
- Lifestyle factors
- MODIFIABLE

Psychiatric Comorbidities

TABLE 1. Estimates of the prevalence of psychiatric disorders in patients with epilepsy

	Incidence		
	Patients with epilepsy	General population	Reference(s)
Depression	4% Seizure free	2-9% Women; 1-3% men	28
	9–22% Uncontrolled/partially controlled	2–9% Women; 1–3% men	28
	27-58% Medically intractable epilepsy	2-9% Women; 1-3% men	28
Depression	3-9% Controlled epilepsy		27
-	20-55% Recurrent epilepsy		27
Major depressive disorder	~8 -4 8%°	5–17%	29
Anxiety	3–50%		34
Neurotic disorders ^b	8%		30
Psychosis	6–10%	1.5-2%	30, 35
Bipolar disorder	1 or 8%	2%	28, 29
Mania	Rare		28
ADHD	14-40%	~5%	36

ADHD, attention-deficit-hyperactivity disorder.

Likely combination of neurobiologic, psychosocial, and possibly iatrogenic effects

^aLifetime-to-date prevalence.

^b Includes dissociative disorder (2.5%), stress-related disorder (1.8%), anxiety-panic disorder (1.5%), and others (2.3%).

Depression rather than seizure frequency is the major factor determining self-rated quality of life in people with pharmacoresistant epilepsy

Pharmacologic properties of Pregabalin

- Acts on voltage gated Calcium channels in the brain, modulating neurotransmitter release
- Note: although structurally related to GABA, Pregabalin does not act on GABA-ergic mechanisms
- Absorption unaffected by meals
- linear dose-uptake relationship in adults
- No hepatic metabolism, no induction, no inhibition
- >98% renaly excreted without being metabolised
- No protein binding
- No interactions with other drugs, including oral contraceptives
- No effect of PGB on CBZ, LTG, PHB, PHT, TPM and VPA

Pregabalin compared to placebo as add-on in licensing trials: robust and dose-dependent seizure reduction

Seizure reduction

Responder rate

Rate of sz freedom

Daily rate of sz freedom

Brodie, Epilepsia 2004; Ramsay et al, Epilepsia 2009

Side effects in licensing trials

	Frequency (%)		Withdrawals due to event (%)	
Adverse event	Pregabalin (n = 758)	Placebo (n = 294)	Pregabalin (n = 758)	Placebo (n = 294)
Dizziness Somnolence Ataxia Asthenia Weight gain Accidental injury Headache Amblyopia (blurred vision) Diplopia Tremor Thinking abnormal (difficulty concentrating)	28.9° 20.8° 13.2° 11.2 10.4° 9.9° 9.1 9.0° 8.4° 7.5° 7.0°	10.5 10.9 4.1 8.2 1.4 5.4 11.6 4.4 3.7 3.7 2.0	5.3 3.3 3.0 1.8 0.4 0.9 1.2 1.6 1.6 1.5	0.3 0.0 0.3 0.3 0.0 0.0 0.0 0.0

Some patients reported >1 adverse event.

French et al, Neurology 2003 Arroyo et al, 2004 Beydoun et al, 2005 Elger et al, 2003

^aSignificantly different from placebo.

Pregabalin effective in Asians with focal epilepsy (add-on, flexible dosing)

178 Korean adults, 75% on 3 AEDs

46% responder rate in PGB arm, 32% in placebo arm7 patients discontinued PGB during study,19 patients requested dose reduction due to side effects

Pregabalin well tolerated in Asians, too

- No idiosyncratic side effects
- Main side effects: Dizziness, Somnolence, Weight gain

	Pregabalin (N = 119)		Place	bo (N = 59)
MedDRA preferred term	All causality	Treatment-related	All causality	Treatment-related
Dizziness	46 (38.7)	42 (35.3)	6 (10.2)	5 (8.5)
Somnolence	26 (21.8)	26 (21.8)	3 (5.1)	3 (5.1)
Weightincrease	14 (11.8)	14 (11.8)	2 (3.4)	2 (3.4)
Fatigue	11 (9.2)	11 (9.2)	3 (5.1)	3 (5.1)
Headache	9 (7.6)	6 (5.0)	7 (11.9)	6 (10.2)
Increased appetite	6 (5.0)	5 (4.2)	1 (1.7)	1 (1.7)
Tremor	6 (5.0)	6 (5.0)	0	0
Constipation	5 (4.2)	5 (4.2)	0	0
Coordination abnormal	5 (4.2)	4 (3.4)	0	0
Vision blurred	3 (2.5)	3 (2.5)	1 (1.7)	1 (1.7)
Dyspepsia	4 (3.4)	3 (2.5)	5 (8.5)	2 (3.4)
Paraesthesia	4 (3.4)	3 (2.5)	0	0
Convulsion	3 (2.5)	3 (2.5)	1 (1.7)	1 (1.7)
Nasopharyngitis	4 (3.4)	0	4 (6.8)	0
Memory impairment	3 (2.5)	0	0	0
Insomnia	I (0.8)	I (0.8)	5 (8.5)	2 (3.4)
Sleep disorder	3 (2.5)	3 (2.5)	2 (3.4)	I (1.7)

Audits in clinical practice I: Spain

- 101 adults, focal epilepsy
- 40% responders at 12 months
- 6% seizure free at 12 months
- Increase in seizure frequency in 4%

Main side effects:

- >10% weight gain seen in 26%
- Dizziness 20% (esp in combination with PHT, CBZ, OXC)
- leg edema 10%
- blurry vision 3%

No idiosyncratic side effects Cognitive side effects rare

Reasons to discontinue at 12 months (total 40%):

- Inefficacy 16%
- Side effects 15%
- Worsening of seizures 9%
- 1 seizure-related death (drowning)

Audits in clinical practice II: UK (Kings)

- 96 adults, 85 focal epilepsy
- 2 (0-4) concomittant AEDs
- 3 (1-9 previous AEDs)
- 30% ultimate responders (median 23 months)
- 10% incicental decrease in anxiety
- Increase in seizure frequency in 4%

Main side effects:

- >10% weight gain seen in 18%
- Dizziness 15% (esp in combination with PHT, CBZ, OXC)
- Drowsiness 17%

No idiosyncratic side effects Cognitive side effects rare

Reasons to discontinue (total 45%):

- Inefficacy 30%
- Side effects 10%
- Inefficacy and side effects 9%

Valentin et al, Seizure 2007 Brandt et al, Seizure 2013

Audits in clinical practice III: UK (NHNN)

- 402 patients, 88% focal epilepsy
- 2 (0 >4) concomittant AEDs
- Patients had failed median 8 AEDs

Retention higher in men than women:

at 1 year 60% vs 45% at 2 years 46% vs 32%

Higher doses attained in men > women

40% discontinued PGB due to side effects:

- CNS-related (35%) and weight gain (12%)
- Women more likely to report side effects and stop PGB due to side effects
- Decision to stop PGB not linked to number of concomitant AEDs

Yen et al, Epilepsy Research 2009; Wehner et al, Seizure 2014

PGB non-inferior to LTG and Placebo as add-on in focal epilepsy: Randomized controlled double blind trial

- 97 centres in Europe, Australia, Canada
- Adults with pharmacoresistant focal epilepsy, on 1 - 3 AEDs, including at least one inducer, randomized to PGB or LTG or Placebo
- PwE had failed 4 (1-7) AEDs
- Note 2 phase design
- Note unusually high placebo response (53%)
 in one country contributing ~20% of patients

Most common side effects in PGB arm: Dizziness (25%), somolence (20%), weight gain (9%), ataxia (9%). No new adverse events

PGB non-inferior to LEV as add-on in focal epilepsy: Randomized controlled double blind trial

- 71 centres in Europe, Asia, South America
- Adults with pharmacoresistant focal epilepsy, on 1 or 2 AEDs (largely CBZ, VPA, TPM, OXC), randomized to LEV or PGB
- Responder rates 59% for both LEV and PGB
- 8.4% on PGB vs 16% on LEV seizure free during maintenance phase
- Higher responder rates with lower(!) doses in both PGB and LEV group

	Pregabalin	Levetiracetam
	(N = 254)	(N = 255)
TEA Es, n	557	475
Patients with TEAEs, n (%)	188 (74.0)	164 (64.3)
Patients with SAEs, n (%)	11 (4.3)	9 (3.5)
Discontinuations due to	16 (6.3)	14 (5.5)
TEAEs, n (%)		
Common TEAEs,° n (%)		
Somnolence	79 (31.1)	73 (28.6)
Dizziness	56 (22.0)	39 (15.3)
Headache	30 (11.8)	24 (9.4)
Weight increased	24 (9.4)	5 (2.0)
Nasopharyngitis	13 (5.1)	16 (6.3)
Nausea	3 (1.2)	15 (5.9)

Discontinuation tended to occur

- in the titration phase with PGB
- in the maintenance phase with LEV

PGB vs LTG as monotherapy in newly diagnosed focal epilepsy

People with 2 focal seizures, on treatment < 2 weeks Pregabalin inferior to LTG in terms of efficacy: first seizure, first sGTCS occured earlier on PGB than LTG

- Side effects overall similar in PGB and LTG
- Weight gain, somnolence more common in PGB
- Oropharyngeal pain more common in LTG

Kwan et al, Lancet Neurology 2011

However, mind the fine print: Methodological issues in monotherapy trials

- Remember prognosis in newly diagnosed epilepsy
- 37% will do well, with no seizure over 1 year
- 25% will be pharmacoresistant
- Primary outcome was seizure freedom for 6 months, comparing essentially the first target dose

Prognosis in newly diagnosed epilepsy

A: early and sustained sz freedom 37%

B: delayed but sustained sz freedom 22%

C: fluctuating 16%

D: never sz free 25%

Pregabalin as monotherapy vs historic control -Trial design developed to mandate FDA-US criteria-

Adults with uncontrolled epilepsy on 1 or 2 AEDs Patients randomized to 600mg/d or 150mg/d ("pseudoplacebo"), predefined exit criteria:

- doubling of seizure rate at 2 or 28 days
- occurence of status epilepticus
- re-occurence of generalised tonic clonic seizures
- any other significant worsening

Main side effects in PGB 600mg/d: Dizziness, somnolence (17% each) Weight gain 16% vs 6% in 150mg/d

Trial stopped early because PGB 600mg/d did better "than expected" (based on historic control design)

French et al, Neurology 2013

Data on Pregabalin in children are extremely limited

- Pregabalin safe and tolerated over 7 days at doses of up to 15mg/kg/d in children age 1 month to 6 years; pharmakokinetics suggest that 15mg/kg/d may be needed in children <30kg to reach an equivalent dose to 600mg/day in adults
- Follow up data in these children with epilepsy on 1-3 further
 AED pending
- 1 fetal malformation in 30 pregancies exposed to Pregabalin monotherapy (Veiby G J Neurol 2014)

Pregabalin and cognitive side effects

Rates and predictors of patient-reported cognitive side effects of antiepileptic drugs: An extended follow-up

Asif Javed ^a, Brian Cohen ^a, Kamil Detyniecki ^b, Lawrence J. Hirsch ^b, Alexander Legge ^a, Baibing Chen ^b, Carl Bazil ^a, Kenneth Kato ^a, Richard Buchsbaum ^c, Hyunmi Choi ^{a,*}

Rates of patient-reported intolerable cognitive side effects <5% with Pregabalin in polytherapy and monotherapy; comparable to most other AEDs

positive outlier: Lamotrigine (2.5%) negative outlier: Topiramate (22.8%)

Sleep and Epilepsy

- PwE, especially those with uncontrolled seizures of any kind, report worse quality of sleep than healthy controls
- PwE have increased sleep latency, increased number of arousals, more shifting between sleep stages, less REM-sleep, and less slow wave sleep compared to controls
- Sleep apnea and periodic limb movement disorder of sleep more common in PwE
- Poor sleep may increase seizure frequency, increase depression, contribute to memory problems in PwE, and decrease performance during daytime

Effect of AEDs on Sleep

CRITICAL REVIEW AND INVITED COMMENTARY

Effects of epilepsy treatments on sleep architecture and daytime sleepiness: An evidence-based review of objective sleep metrics

Sejal V. Jain and Tracy A. Glauser

Epilepsia, 55(1):26-37, 2014 doi: 10.1111/epi.12478

- "Virtually all AEDs affect sleep architecture"
- AEDs with positive effect on sleep latency / sleep efficiency:
 Carbamazepine, Clobazam, Pregabalin, Gabapentin, Tiagabine
- AEDs that increase daytime sleepiness:
 Phenobarbitone, Valproate, Levetiracetam in high doses
- AEDs without effect on daytime sleepiness:
 Topiramate, Zonisamide

Pregabalin and dependency

- Pregabalin over-proportionally prescribed in imprisoned patients
- 50% of apprehended drivers had serum levels outside the recommended range, often in combination with other drugs
- Risk factors for abuse appear to be current or history of polytoxic drug misuse
- Physicians need to be aware of abuse potential and "street value" of Pregabalin

Conclusion

- Few predictors of pharmacoresistance are modifiable, including adherence and lifestyle factors
- Pregabalin is effective and comparable to LTG and LEV as add-on therapy in pharmacoresistant focal epilepsy, with very early effect
- Pregabalin has a favorable pharmakokinetic profile, and is generally well-tolerated
- Somnolence, dizziness, and weight gain are the most common reported side effects, more common in women
- Pregabalin reduces anxiety in some people with epilepsy
- Role as monotherapy and in children to be defined

