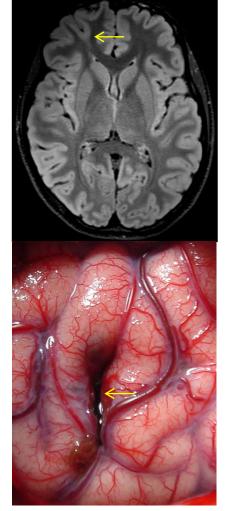
Recent Advances in Surgery for Drug Resistant Epilepsy

2019 Annual Meeting of the Epilepsy Society of Thailand

Dr. A. Simon Harvey Royal Children's Hospital, Melbourne, Australia

Epilepsy surgery

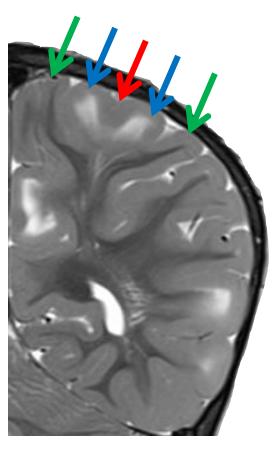

- 20% patients with epilepsy have uncontrolled seizures and a proportion of these will benefit from epilepsy surgery
- the superiority of epilepsy surgery over other treatments for uncontrolled epilepsy (AEDs, ketogenic diet, VNS, DBS) relates to the potential for complete seizure control with associated QOL and economic benefits
- epilepsy surgery is being increasingly performed in (younger) children, in complex settings (multi-lesional, MRI-negative) and in countries with limited healthcare resources
- however, epilepsy surgery remains underutilized, delays to epilepsy surgery with consequences are common, long-term seizure-free rates remain about 50-60%, comorbidities are inadequately managed, and epilepsy surgery is under-resourced in most countries

Recent advances in epilepsy surgery

- targeted, image-guided, microsurgical resection of epileptogenic lesions *e.g. BOSDs, tuber centres, tiny operative corridors*
- minimally-invasive surgical approaches *e.g. LITT, radiosurgery, focused ultrasound*
- computer-based automation and machine learning e.g. analysis of presurgical data, patient selection, outcome prediction
- biomarkers of the epileptogenic zone eg. HFOs
- incorporation of genomics in epilepsy surgery e.g. genetic focal epilepsies, somatic mutations
- not stereo-EEG

Targeted, microsurgery: Bottom-of-sulcus dysplasia

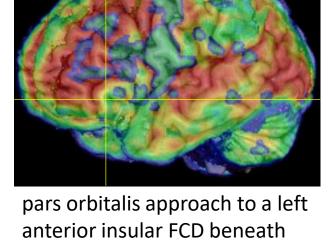
- many intellectually-normal patients with DRE and focal seizures have small FCD-2a/b at the bottom-of-sulci
- typically single, commonly dorsolateral or medial frontal
- MRI obvious/subtle/occult, localized focal hypometabolism on PET, localized focal hyperperfusion on SPECT
- high-frequency stereotyped focal seizures
- drug responsive/resistant, relapsing/remitting
- easily operated 1-stage with ECoG and MRI
 - intracranial EEG is unnecessary if BOSD identified
- >90% seizure-free following resection
 - some need reoperation if residual dysplasia

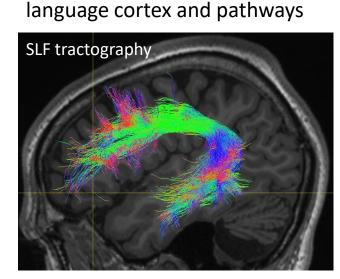


Harvey et al. The surgically-remediable syndrome of epilepsy associated with BOSD. *Neurology* 2015.

Targeted, microsurgery: centres of cortical tubers

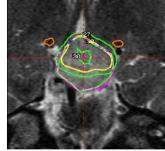
Our research suggests epileptogenicity in TSC is based on:


- a "dysplastic" tuber centre
 - rhythmic IEDs and seizures recorded on ECoG/iEEG
 - pit with cortical thickening and abnormal signal on MRI
 - concentration of dysmorphic neurons on pathology
- surrounded by an "inactive" tuber rim
- surrounded by "inactive" or "reactive" perituberal cortex

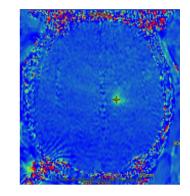

Mohamed AR et al. Intrinsic epileptogenicity of cortical tubers revealed by intracranial EEG monitoring. *Neurology* 2012 Kannan L, et al. Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis. *Brain* 2016

Targeted, microsurgery: tiny operative corridors

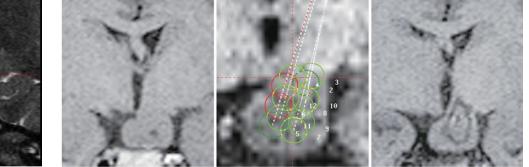
- combining multiple imaging modalities to build a virtual 3D model of lesional, epileptic and functional regions
 - MRI (lesions)
 - FDG-PET (metabolic activity)
 - SPECT (seizures)
 - tractography (white matter pathways)
 - functional MRI (motor, sensory, language, seizures, resting)
- plan surgical approaches and load onto neuronavigation systems, update and monitor with intraoperative MRI
- potentially operate safely without need for
 - intracranial EEG monitoring
 - cortical stimulation
 - awake craniotomy

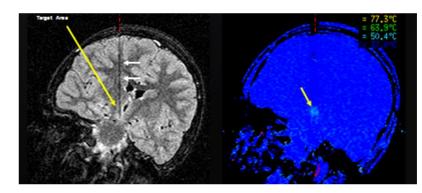


PET, MRI and language fMRI



Minimally-invasive surgery: stereotactic radiation or thermal


- ideal for small, deep lesions
- advantages
 - no craniotomy required (extracranial or burr holes only)
 - reduced hospital stay and costs
 - reduced discomfort, blood loss
 - reduced morbidity (traversing cortex and pathways)
- disadvantages
 - delayed efficacy
 - no EEG or histopathology
 - less controlled lesion than with open microsurgery


Gamma Knife radiosurgery (Regis, 2017 – Marseille, France)

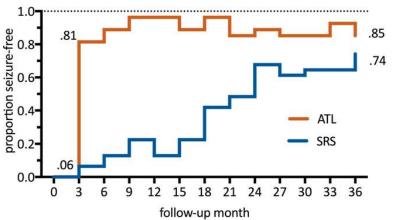
focussed ultrasound (Fountain, 2016 – Virginia, USA)

stereotactic radiofrequency thermocoagulation (Kameyama, 2009 – Niigata, Japan)

laser interstitial thermal therapy Dan Curry – Texas Children's Hospital, USA

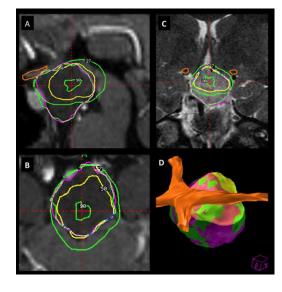
Minimally-invasive surgery: Gamma Knife radiosurgery

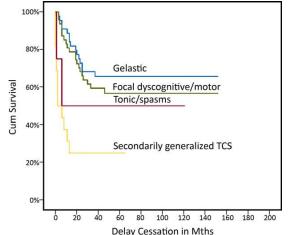

- Gamma Knife[®] (Elekta) is one of several forms of stereotactic radiosurgery, others being Linac and proton beam therapy
- averaging of multiple beams of γ radiation from 200 precisely collimated ⁶⁰Co sources distributed on the surface of a sphere, further tailored by secondary collimators in an adjustable helmet and dose planning software
- low doses (<20 Gy) to small volumes bring about functional change in tissue
- epilepsy associated with HH, tumours, AVMs, cavernomas, HS, callosotomy
- disadvantages


 - delayed seizure improvement
 delayed radionecrosis syndrome
 ? risk of secondary tumors
 ? risk of cognitive / endocrine impairment

Minimally-invasive surgery: GKS in temporal lobe epilepsy

- RCT of adults with mTLE randomised to SRS targeting medial temporal structures (31) or standard ATL (27)
- outcomes were absence of disabling seizures verbal memory and QOL at 36 months
- 52% SRS and 78% ATL patients achieved seizure remission
- mean VM changes from baseline for 21 Englishspeaking, dominant-hemisphere patients did not differ between groups
- symptomatic cerebral oedema in some SRS patients cerebritis or subdural hematoma in some ATL patients
- SRS is an alternative to ATL for patients with contraindications or reluctance to undergo open ATL



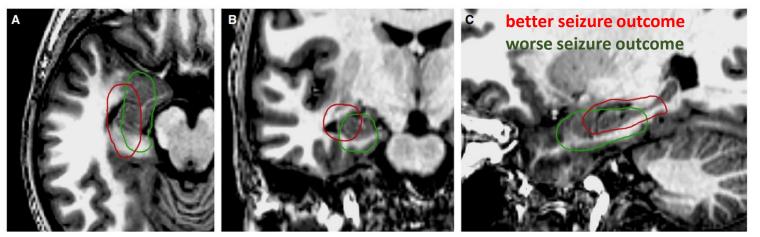


Barbaro et al. Radiosurgery versus open surgery for mTLE (ROSE trial). *Epilepsia* 2018

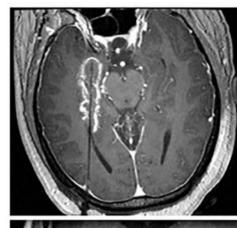
Minimally-invasive surgery: GKS in hypothalamic hamartoma

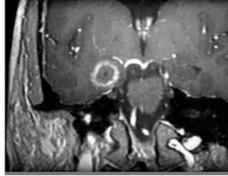
- 57 patients with HH treated by GKS in Marseilles 2000-7
- follow-up >3 yrs in 48 patients (median 71 months)
- HH type I in 11, type II in 15, type III in 17, type IV-VI in 4
- median marginal dose was 17 (14-25) Gy
- 58.3% required a second treatment
- Engel I = 40%, Engel II = 29%, Engel III = 20%
- psychiatric comorbidities cured 28%, improved 56%, stable 8%, continued worsening 8%
- no permanent neurological or memory deficits transient poikilothermia = 6

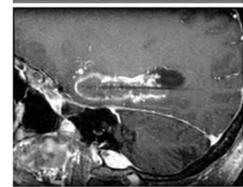
Regis J et al. Safety and efficacy of GK radiosurgery in HH. Epilepsia 2017

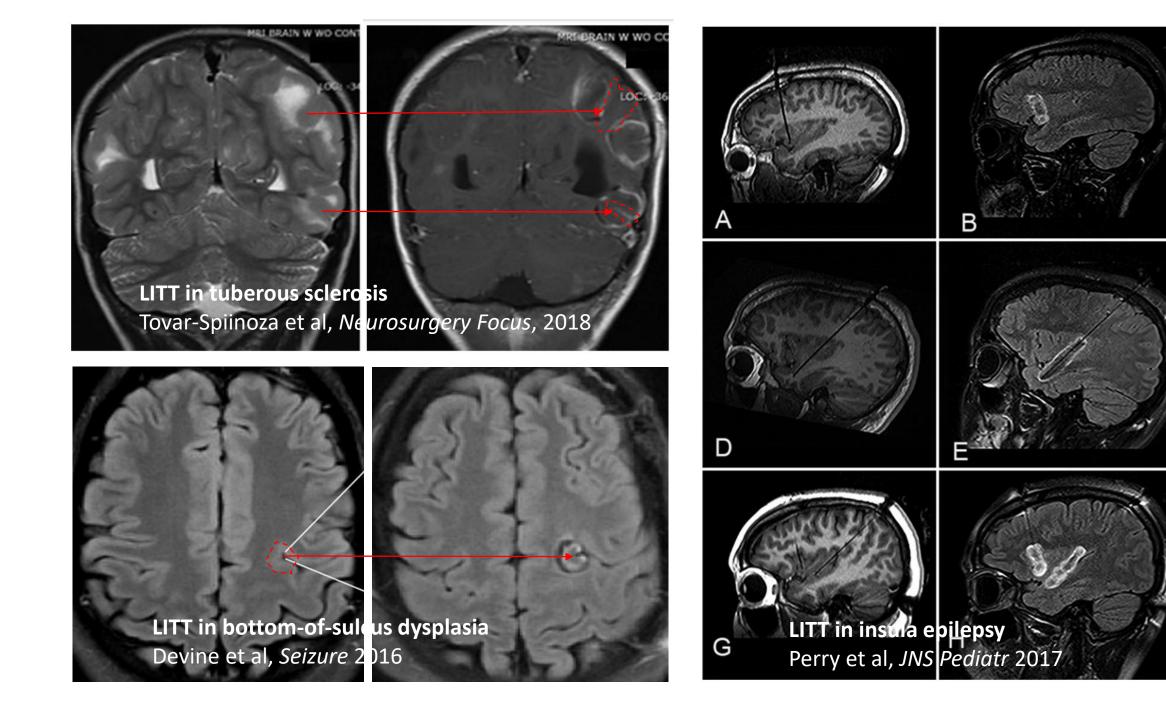

Minimally-invasive surgery: Laser interstitial thermal therapy

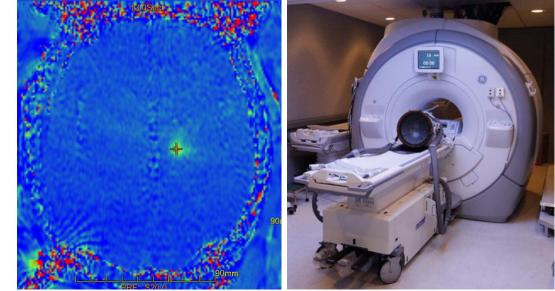
- laser interstitial thermal therapy (LITT) = laser thermal ablation with MRI-guided stereotactic probe and real-time MRI thermography (Visualase[®] by Medtronic, NeuroBlate[®] by Monteris)
- advantages
 - small incision, short hospital stay, reduced morbidity
 - plan and monitor ablation in real time under MRI
 - reach small deep targets
- disadvantages
 - limited control of size and shape of thermal lesion (heat sinks)
 need for cranial fixation (>2-3 years old)
- similar efficacy to open craniotomy surgery in mTLE insula epilepsy, hypothalamic hamartoma, heterotopia, cavernoma, corpus callosotomy



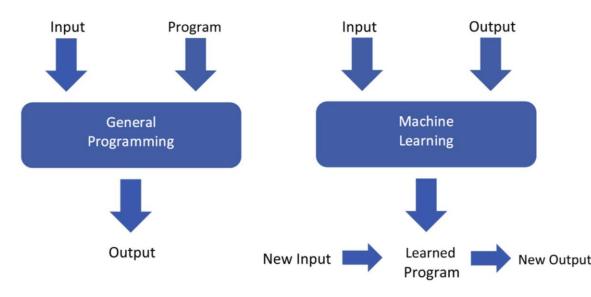

Minimally-invasive surgery: LITT in temporal lobe epilepsy


- seizure freedom in medial TLE between 36-78% at >1 year
 60-90% if hippocampal sclerosis
- briefer hospitalisation, better cognition and language
- risk of visual field defect from LGN heating
- better when the ablative volume involves amygdala, head of hippocampus, parahippocampal gyrus, rhinal cortices





Minimally-invasive surgery: Focused ultrasound

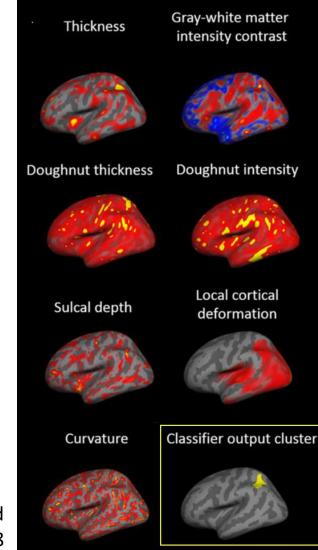

- focused ultrasound (FUS) = thermal ablation of tissue by focally concentrated sound wave energy delivered by a helmet array of FUS transducers inside MRI with real-time MR thermography monitoring
- essential tremor, Parkinson's disease, obsessive-compulsive disorder, depression, neuropathic pain (trials in epilepsy underway e.g. HH, insula)
- advantages
 - no craniotomy, no traversing brain injury
 - no anaesthesia
 - ideal for deep lesions in centre of head
- disadvantages
 - 2-4 hours therapy (may need sedation)
 - no good for eccentric cortical lesions

Computerised automation and machine learning

- ultrafast processing speeds, tandem parallel computing, massive data storage (local and cloud), rapid data transfer
- secure database linkage (research, clinical, govt, industry), crowd sourcing
- machine learning or deep learning

- a type of AI in which computer-based algorithms are used to recognise patterns in large, complex data sets, with supervised training but no explicit programming

Senders et al. Machine Learning and Neurosurgical Outcome Prediction. *World Neurosurgery* 2018


Computerised automation in epilepsy surgery

- neuroimage analysis
 - automated hippocampal volumetry, pipelines for multimodal image processing
 - 3D virtual surgery and planning
 - detection of occult lesions with VBM or surface/textural analysis
- seizure analysis
 - spike, seizure and HFO detection in intracranial EEG monitoring and ECoG
 - seizure forecasting from EEG and other biophysical data in medical devices for patient alerting and RNS
 - analysis of seizure semiology
- patient classification/selection and outcome prediction
 - predicting drug resistant epilepsy from clinical data, insurance data
 - predicting seizure freedom following surgery
- individualised "virtual epileptic brain" (Jirsa et al, Brain 2014 & Neuroimage 2016)

Computerised automation in epilepsy surgery: FCD detection

- 61 patients with drug-resistant focal epilepsy
 - scanned and operated at 3 centres
 - MRI evidence of FCD (subtle or obvious)
 - histologically proven FCD type 2
- normal database (120 healthy controls) for learning
- 35 healthy controls and 15 mTLE-HS patients for testing
- T1 images post-processed, cortical surface features calculated, FCD marked on MRI, trained in a non-linear neural network to discriminate FCD from normal cortex
- FCD detection: sensitivity = 74%, specificity = 90% and AUC for the ROC analysis = 0.75 (discriminative)
 - better in MRI obvious cases

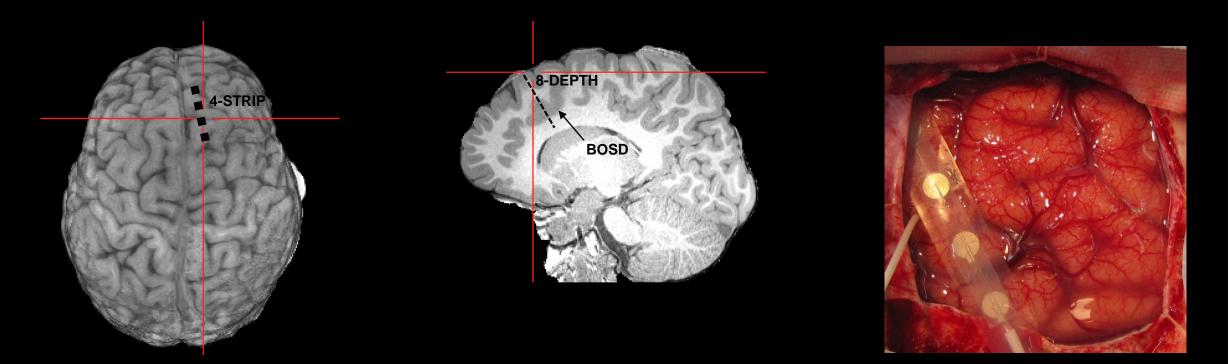
Jin B, Krishnan B, Adler S et al. Automated detection of FCD type II with surface-based MRI postprocessing and machine learning. *Epilepsia* 2018

http://www.clevelandclinicmeded.com/medicalpubs, diseasemanagement/neurology/epileptic-syndrome,

Irritative zone

Epileptogenic zone

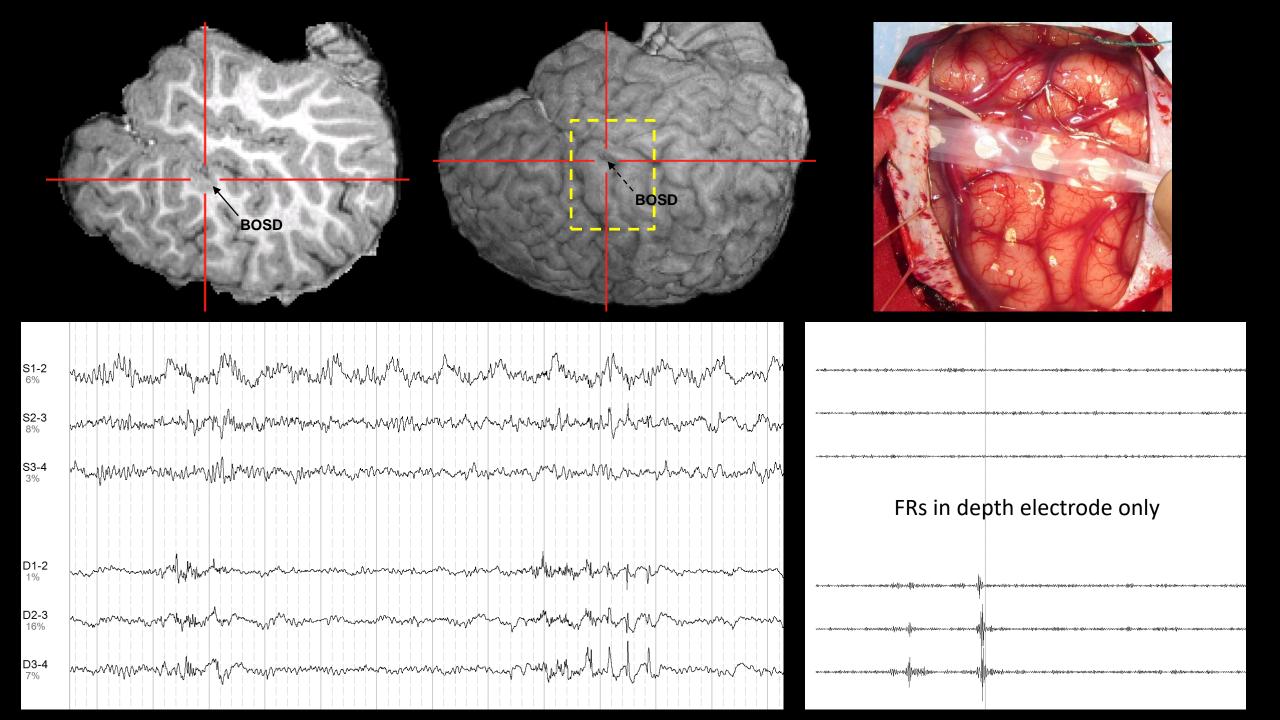
Epileptogenic lesion


Local onset zone

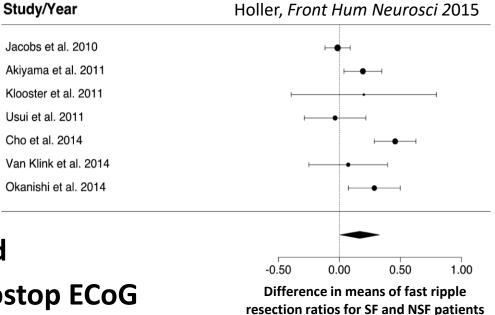
Biomarkers of the epileptogenic zone

- epileptogenic zone = the minimal region of cortex necessary to resect for the patient to become seizure free, informed by
 - seizure (local) onset zone
 - epileptogenic lesion
 - interictal abnormalities (irritative)
 - secondarily involved (connected) regions
- depends on underlying pathology e.g. in FCD2
 - visible cortical lesion on MRI
 - runs of CEDs on interictal ECoG
 - seizure onset with preictal rhythmic spiking and LVFA
 - pathological lesion, especially dysmorphic neurons
 - ? mutated neurons in dysplastic cortex

Biomarkers of the epileptogenic zone: HFOs


- high frequency oscillations are bursts EEG activity > 80Hz
 80-240 Hz = ripples, 250-500 Hz = fast ripples
- first described in epilepsy in 1999 with microelectrodes in hippocampi of rats (Bragin A et al, *Hippocampus* 1999; *Epilepsia* 1999; *Ann Neurol* 2002, 2004)
- now widely reported in patients with epilepsy, with 100s of publications on their presence and associations
 - interictal or ictal, with or without spikes
 - with microelectrodes, macroelectrodes or scalp electrodes
 - physiological (? ripples) or pathological (? fast ripples)
 - visual or automated detection from intracranial EEG (chronic iEEG or intraop ECoG)
- proposed as a "biomarker" of epileptogenesis and the epileptogenic zone
 - greater association with seizures than IEDs and lesions
 - association with surgical outcome

222 Marthelen Hill, Marthellen Hall Ander Hander Hander Hall Hander Hand

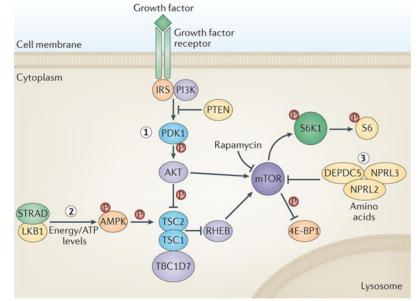

continuous rhythmic SW in depth contacts #3 and #4

51-2 50 μV/mm	unuterillystyphysionenensetherformethisserverille	S1-2 2 µV/mm	&=====================================
52-3 50 μV/mm	ารของสะหนึ่งไม่มีผู้ใหญ่หญามีสาวัตรรับคารโลกกะรายระดอสมาร์ไลก	S2-3 2 µV/mm	ĸġĸĸţŗĸ ġĸĸ ġĸĸĸĸŧ <mark>ſĸĸĸġĸĸĸĸŎŢĸġġĸĸġĸĸĴġĸġĸĸġĸĸġĸĸġĸĸġĸĸġĸĸġĸĸġĸĸġĸĸġĸ</mark>
53-4 50 μV/mm	warmerstyllingerendermoneration and	S3-4 2 μV/mm	19-11-11-11-11-11-11-11-11-11-11-11-11-1
			FRs in depth contact #4
01-2 30 µV/mm	-WWW.WWW.WWW.WWW.WWW.WWW.	D1-2 2 µV/mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
02-3 30 µV/mm	freedown freedom and more thank	D2-3 2 µV/mm	war one of the first of the second of the se
)3-4 30 µV/mm	Junpoor hundred and have been been and	D3-4 2 μV/mm	and a second as a first a first a first a second a first and a second first and a second second first a second second second first a second
04-5 30 µV/mm	-handrenstrander -	D4-5 2 μV/mm	and the second of the second contraction of the second contraction of the second by the second the second
05-6 30 µV/mm	tombrand for more and the second	D5-6 2 µV/mm	Man we prove we have been and a second
06-7 30 µV/mm	opportation and common and	D6-7 2 μV/mm	in the second of the second
07-8 30 µV/mm	www.wayawyawyawyawya	D7-8 2 μV/mm	#\$## vfs.vf.m

Biomarkers of the epileptogenic zone: HFOs

- HFOs increase before but not after seizures (unlike IEDs)
- HFOs increase when AEDs reduced, like seizures (unlike IEDs)
- HFOs decrease with propofol, like seizures (unlike IEDs)
- HFOs evoked with single-pulse stimulation
- HFOs occur in regions with low AD threshold
- HFOs found more frequently in the seizure-onset zone, irrespective of lesion
- HFOs present at seizure onset and spread with interruption of local inhibition
- surgery outcome better when HFO region resected
- surgery outcome even better when no HFOs on postop ECoG

Jacobs , *Epilepsia* 2008; Urrestarazu, *Brain* 2007; Jacobs, *Brain* 2009; Bagshaw, *Epilepsia* 2009; Zijlmans, *Neurology* 2009; Jacobs, *Ann Neurol* 2010; Wu, *Neurology* 2010; Akiyama, *Epilepsia* 2011; Nairai, *Epilepsia* 2011, Holler, *Front Hum Neurosci* 2015; Frauscher et al, *Epilepsia* 2017


Biomarkers of the epileptogenic zone: HFOs

- 52 patients at 3 centres (Freiburg, UCLA, MNI) recruited patients over 1 year
 HFOs recorded with chronic iEEG or intraoperative ECoG
- post hoc, standardised, blinded, automated and visual analysis of HFOs
- correlation between resection of HFO-generating regions and seizure-free outcome at the group level
- no correlation at the centre level or patient level
 - individual prognostication of seizure outcome in only 67% patients
 - some seizure-free patients without removal of all HFO-generating tissue
- "HFOs may be less specific for epileptic tissue than earlier studies indicated"
- ? HFOs an artefact of filtered spikes
 - ? HFOs just an EEG epiphenomena
 - ? better outcome related to bigger resection

Jacobs et al. Removing HFOs: A prospective multicenter study on seizure outcome. Neurology 2018

Incorporation of genomics in epilepsy surgery

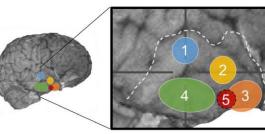
- recognition of drug-resistant, MRI-pos/neg, focal epilepsies evaluated for surgery that have a genetic (germline) basis
 - surgically-remediable e.g. TSC1/2, DEPDC5, NPRL2/3, NF1
 - non-surgically-remediable e.g. SCN1A, POLG, PCDH19, DCX
- recognition of somatic mutations underlying surgical MCDs and FCDs
 - HMG: PIK3CA, AKT3, MTOR
 - SWS : GNAQ
 - FCD2: TSC1/2, DEPDC5, NPRL2/3, MTOR, RHEB
 - FCD1: SLC35A2
- impression of epileptogenicity correlated with
 - mutation gradient (allele frequency)
 - dysmorphic neuron gradient

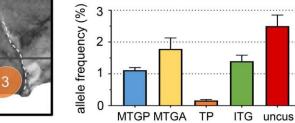
Nature Reviews | Neurology

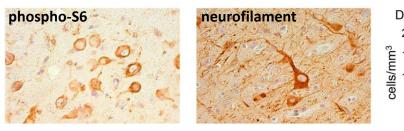
Incorporation of genomics in epilepsy surgery

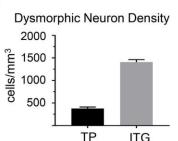
- family history taking and potentially genetic testing to inform
 - patient selection for surgery
 - prognosis following surgery
 - genetic counseling following surgery
 - research
- specimen collection in operating theatre
 - blood, skin and CSF for genetic testing
 - fresh brain tissue (frozen <80°) for genetic testing (deep sequencing, ddPCR)
 - FF-PE brain tissue for histopathology (H&E, NeuN, phospho-S6, neurofilament)
 - meticulous labeling, photographing, correlation with MRI & ECoG
 - collaboration with research centres

BRIEF COMMUNICATION

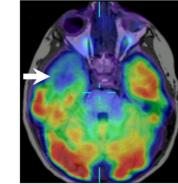

Second-hit DEPDC5 mutation is limited to dysmorphic neurons in cortical dysplasia type IIA

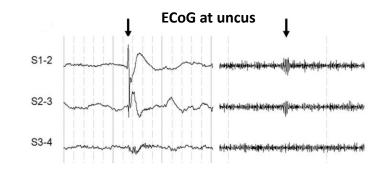

Wei Shern Lee^{1,2}, Sarah E. M. Stephenson^{1,2}, Katherine B. Howell^{1,2,3,4}, Kate Pope¹, Greta Gillies¹, Alison Wray^{1,5}, Wirginia Maixner^{1,5}, Simone A. Mandelstam^{1,2,4,6}, Samuel F. Berkovic^{2,4} (D, Ingrid E. Scheffer^{1,2,3,4}, Duncan MacGregor^{1,7}, Anthony Simon Harvey^{1,2,3}, Paul J. Lockhart^{1,2,*} (D & Richard J. Leventer^{1,2,3,*} (D

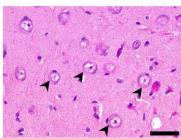

A boy with DRE, FCD, and a germline DEPDC5 pathogenic variant:

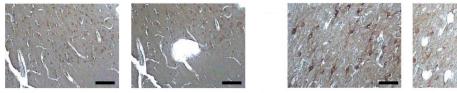

- a second-hit DEPDC5 variant was found limited to DNs

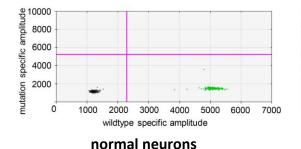
- the somatic mutation load correlated with DN density and the EZ

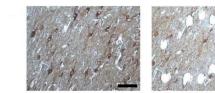


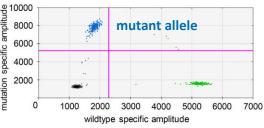

Mutation Load


Open Access









dysmorphic neurons

Future advances in epilepsy surgery: Precision surgery

- gathering more detailed patient data (clinical, imaging, EEG, genetic, SES)
- pooling of patient data at a population level into large databases
- machine learning approaches to patient classification, surgical selection, and identification of epileptogenic lesions and foci
- development of patient-specific, virtual models of normal and epileptic structures and networks to identify surgical targets and approaches
- image-guided, robotic-assisted, non/minimally-invasive technologies for cortical lesioning or functional disruption to control seizures
- feedback of patient outcomes (seizures, comorbidities, QOL, economic) into machine learning algorithms for more informed future decisions