
Neuronal network synaptic transmission

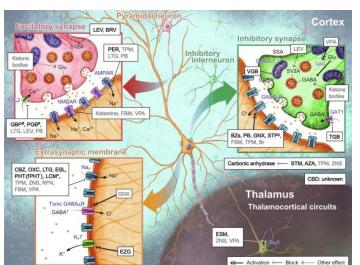
Excitotoxicity and neurodegeneration in epilepsy

Chronological development timeline of antiepileptic drug

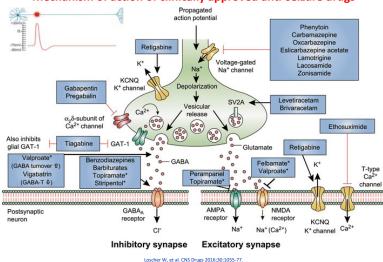
Mechanisms of neuronal excitability and target of actions for AED

- ♦ Voltage sensitive Na⁺ channels
- ♦ Voltage sensitive Ca²⁺ channels
- $\bigcirc \downarrow$ Voltage sensitive K⁺ channel

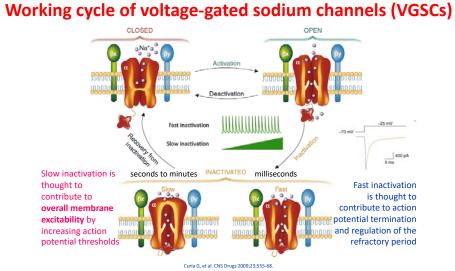
Receptor-ion channel complex

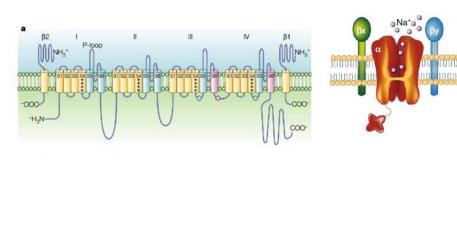

- ●↑ Excitatory amino acid receptor-cation channel complexes
 - Glutamate
 - Aspartate
- $= \downarrow$ GABA-Cl⁻ channel complex

Action of antiepileptic drugs on neurons

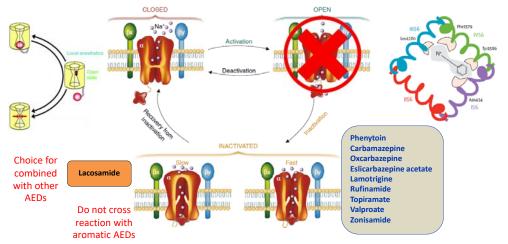

CB2, Carbamazepine; CXC, oxcarbazepine; ITG, lamotrigine; LCM, lacosamide; ESL, eslicarbazepine acetate; PHT, pherytoin; PHT, fosphenytoin; TPM, topiramate; ZNS, zonisamide; FFN, rufinamide; LEV, levetiracetam; BRV, brivracetam; PER, perampanel; PB, phenobarbital; GBP, gabapentin; PGB, pregabalin; FBM, felbamate; EZC, ezogabine (retigabine; VPA, sodium valproate; VGB, vigabatrin; TGB, tigabine; BZ, benzodiazepine; STP, stiripento; GNX, ganaxolone; Br, bromide; CBM, enhosumidie; STM, sulthiame; RZA, acetazolamidic; CBD, cannabidiol

+ extrasynaptic GABA

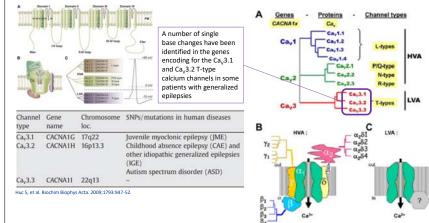

*enhancement of slow inactivation of sodium channel *acting on a26 protein of the presynaptic P/Q-type HVA and N-type calcium channel *additional effect to elevate the clobazam level by inhibition of cytochrome P450 (CYP) Drug names in gray indicate secondary, fractional, or uncertain action


Kobayashi K, et al. Brain Dev. 2020 Jan;42(1):2-5. doi: 10.1016/j.braindev.2019.07.006.

Mechanism of action of clinically approved anti-seizure drugs



Primary structures of voltage-gated sodium channel


Rogawski MA, et al. Nat Rev Neurosci 2004;5:553-64.

Mechanism of actions of VGSC (sodium channel) blockers

Tissue distribution of NaV subtypes

Channel nomenclature	Gene	Chromosomal location (human)	Tetrodotoxin sensitivity	Major tissue expression	Effect of mutation
Nav1.1	SCN1A	2q24	\checkmark	CNS, PNS	Epilepsy
Nav1.2	SCN2A	2q23–24	~	CNS, PNS	Epilepsy
Nav1.3	SCN3A	2q24	\checkmark	CNS, PNS	None reported
Nav1.4	SCN4A	17q23–25	~	Skeletal muscle	Myotonia, periodic paralysis
Nav1.5	SCN5A	3p21	×	Heart	Long QT, Brugada syndrome, progressive familial heart block
Nav1.6	SCN8A	12q13	~	CNS, PNS	Cerebellar atrophy
Nav1.7 Nav1.8 Nav1.9	SCN9A SCN10A SCN11A	2q24 3 3	× X X	PNS (SNS and PAs)	Increased and decreased pair sensitivity

Proft J, et al. Mol Pharmacol. 2015'87(6):890-906.

Voltage-gated calcium channels (VGCCs)

composition Ca_V1.1 L Skeletal muscle DHPs Excitation-contraction coupling ais Calcium homeostasis and function Gene regulation Cav1.2 L Cardiac muscle DHPs Excitation-contraction coupling α_{1C} of Ca²⁺ Endocrine cells Hormone secretion Neurons Gene regulation Endocrine cells and ID L DHPs channel types Ca_V1.3 Hormone secretion Neurons Gene regulation Ca_V1.4 L Retina Tonic neurotransmitter release 01F Cav2.1 P/Q Nerve terminals w-Agatoxin Neurotransmitter release α_{1A} Dendrites Dendritic Ca2+ transients Cav2.2 Ν Nerve terminals Q18 ω-CTx-GVIA Neurotransmitter release Dendritic Ca2+ transients Dendrites Cav2.3 R Cell bodies Ca2+-dependent action potentials 01F None Dendrites Neurotransmitter release Nerve Terminals Ca_V3.1 Cardiac muscle T ala None Repetitive ring Skeletal muscle Neurons Cav3.2 Т Cardiac muscle None Repetitive ring α₁₁₁ Neurons

Primary

localizations

Specific

blocker

None

Functions

Repetitive ring

Previous name

of apsubunits

Ca2+ current

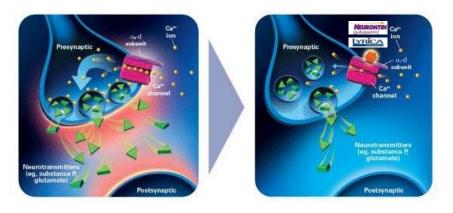
type

Ca²⁺ channel

Ca_V3.3

Т

Subunit


Zamponi GW, et al. Pflugers Arch – Eur J Physiol 2010;460:395-403.

Catterall WA. Annu Rev Cell Dev Biol 2000;16:521-55.

011

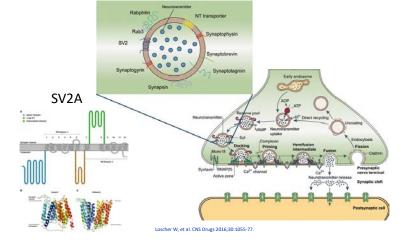
Neurons

Binding of gabapentin & pregabalin to the α_2 - δ subunit resulting in decreased release of glutamate, substance P, calcitonin-gene-related peptide, and norepinephrine

Subtypes of α_2 - δ auxiliary subunit of N-type calcium channel

Channel protein name	Gene locus name	Location of expression	Distinguishing properties
α ₂ δ—(Type 1)	CACNA2D1	Neocortex, amygdala, hippocampus, striatum, dorsal horn of spinal cord	Binds pregabalin, gabapentin
α ₂ δ—(Type 2)	CACNA2D2	Cerebellum (molecular layer), hypothalamus	Binds pregabalin, gabapentin
α ₂ δ—(Type 3)	CACNA2D3	Striatum, neocortex, thalamus (by mRNA)	No drug binding
α ₂ δ—(Type 4)	CACNA2D4	Pituitary, adrenal gland, intestine	No drug binding

Durkin B, et al. Expert Opin Pharmacother 2010;11:2751-8.

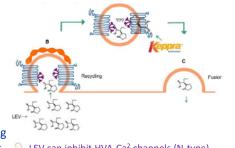


Affinities of Gabapentin and Pregabalin on auxilary subunit of

 α_2 - δ N-type calcium channel

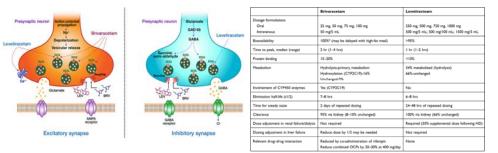
Zheng L. et al. Eur J Pharmacol 2011:667:80-90

The dynamics of SVs at the presynaptic terminal, illustrating detailed mechanism of NT release and synaptic vesicle recycling



Mechanism of levetiracetam

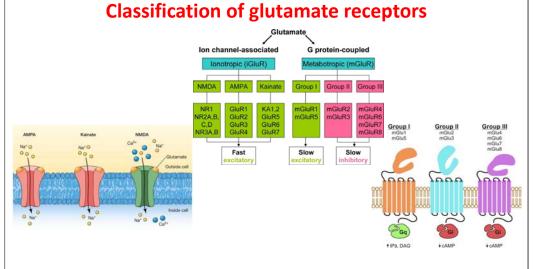
 LEV binds reversibly, saturably, and sterospecifically to SV2A
 LEV does not bind to its two isoforms, SV2B and SV2C


30 nM pregabalin

 LEV binds to SV2A leading to decreased transmitter release

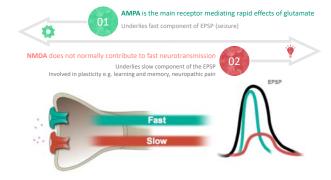
LEV can inhibit HVA-Ca² channels (N-type), negate the inhibition of negative allosteric modulators such as zinc and β-carbolines of GABA- and glycine-gated currents, and diminish the calcium release from intraneuronal stores

Brivaracetam: an analog of levetiracetam

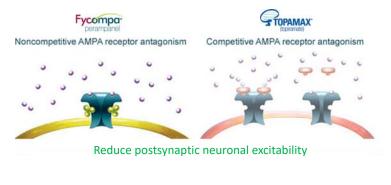


BRV was found to have 15–30 times greater affinity for SV2A and faster brain permeability than LEV
 Correlated well with its higher potency and efficacy in various animal models of focal, generalized, and drug-resistant seizures

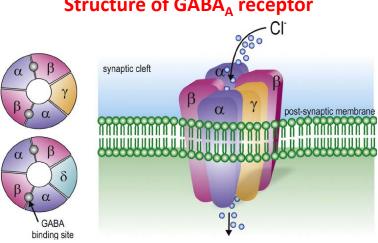
 BRV does not Inhibit high-voltage-gated calcium currents or modulate inhibitory or excitatory postsynaptic ligandgated receptors at therapeutic brain concentrations

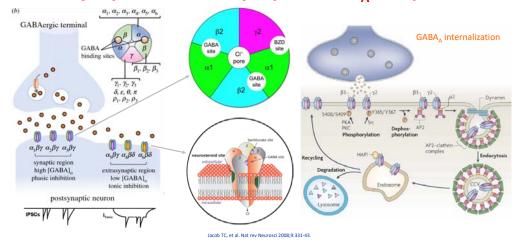

Feyissa AM. Neuropsychiatr Dis Treat. 2019 Sep 9;15:2587-2600. doi: 10.2147/NDT.S143548.

Mendoza-Torreblanca JG, et al. Eur J Neurosci 2013;38:3529-39



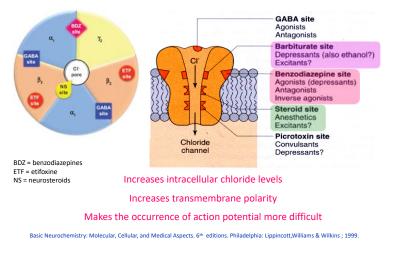
Distinct roles of NMDA and AMPA receptor Same glutamate receptor ... Different action


Glutamate mediates most fast excitatory neurotransmission in the CNS


Mechanism of AED at AMPA receptor

Possible neuroprotective effect

Structure of GABA_A receptor


Synaptic and extrasynaptic GABA_A receptor Pha

Pharmacology of $\textbf{GABA}_{\textbf{A}}$ receptors classified by $\alpha\text{-subunit}$

	α1	α2	α3	α5
Sedation / Dependence	+	-	-	-
Anterograde amnesia	+	ND	ND	ND
Anticonvulsant activity	+	-	-	-
Anxiolysis	-	+	-	-
Myorelaxation	-	+	+	+

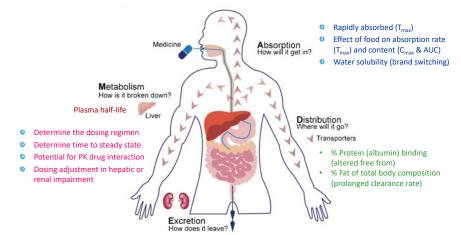
Rudolph U. Benzodiazepines. In Encyclopedia of Molecular Pharmacology 2008

AED acting on GABA_A receptor

Differential pharmacology of AED

Properties	1 st generation	2 nd generation	3 rd generation
Mechanism of action (MOA)	Simple MOAs (VGSC, GABA receptor)	Multiple MOAs or Specific target of action (SV2A, T-type VGCC, N- type VGCC, GAT, GABA-T, AMPA/kainite receptor)	Novel target of action (PAM at AMPA, slow- inactivated VGSC)

AED	Inhibition of glu	tamate excitation		Increase of GABA inh	ibition			Ionic channel		Other MOA
	↓ Giu release	Receptor blockade	GABA release/brain level	Bind GABA _A receptor	Inhibit GABA transporter	Inhibit GABA transminase	Blockade of VGSC	Blockade of VGCC	Activation of KCNQ/Kv7	
Benzodiazepines				(PAM at BZD)						
Brivaracetam	(bind SV2A)									
Carbamazepine							(fast)			
Eslicarbazepine							(fast)			
Ethosuximide								(T)		
Felbamate		(NMDA)	•	 (1) inh. effect) 			(fast)			
Gabapentin								(N, P/Q)		
Ganaxolone				(neurosteroid)						
Lacosamide							(slow)			
Lamotrigine							(fast)	🔵 (N, P)		S-HT _{1A} PA
Levetiracetam	(bind SV2A)							🔵 (N)		
Oxcarbazepine							(fast)	🔵 (N, P)		
Perampanel		(PAM at AMPA)								
Phenobarbital		😑 (AMPA)		 (barbiturate) 						
Phenytoin							🔵 (fast)			
Pregabalin								🔵 (N, P/Q)		
Retigabine/Ezogabine									(PAM at Kv2-5)	
Stiripentol			•	🔵 (PAM at α3, δ)						
Tiagabine					•					
Topiramate		(AMPA/kainite)	•	 (1 inh. effect) 			🔵 (fast)	🗢 (L)		Inh. CAI II,IV
Valproic acid			● (↑ synthesis, ↓ metabolism/reuptake)				(fast)	• (T)		Inh. histone deacetylase
Vigabatrin						•				
Rufinamide							(fast)			
Zonisamide			● (↑ release, ↓ uptake)				(fast)	(T)		Free radical scavenger, inh. CAI PAM: positive allostenc modulator


Summarize mechanisms	of action of	AED
----------------------	--------------	-----

Miziak B, et al. Expert Opin Drug Discov 2013;8:1415-27.

AED	Focal Seizures	Generalized Tonic-Clonic Seizures	Generalized Absence Seizures	Generalized Myoclonic Seizures	Lennox-Gastaut Syndrome	Infantile Spasms
Carbamazepine	1	Suggested	х	х		
Phenobarbital	1	Suggested	х	IV		
Phenytoin	1	Suggested	х	х		
Valproic acid	1	Suggested	I.	Suggested	Suggested	Suggested
Ethosuximide	х	х	I.	х		
Felbamate	1	Suggested	?	?	I.	
Oxcarbazepine	1	?	х	х		
Gabapentin	1	х	х	х		
Pregabalin	1	х	х	х		
Lamotrigine	1	I.	Suggested	Variable	I	
Levetiracetam	1	1	Suggested	1		
Topiramate	1	1	х	?	I.	
Tiagabine	I.	х	х	х		
Vigabatrin	1	х	х	х		I.
Zonisamide	1	Suggested	Suggested	Suggested		
Lacosamide	1	?	х	х		
Perampanel	1	1	?			
Rufinamide	I.	Suggested	?	?	I	
Ezogabine	I	?	?	?		
Eslicarbazepine acetate	T	?	x	х		
Clobazam	Suggested	Suggested	Suggested	Suggested	I.	

Psychiatric Disorders Neurological Disorders AED Pain Others Carbamazepine Mania, BD I, Agitation TGN, PHN, DPN, Phantom limb pain Phenobarbital Sedation induction Phenytoin Paroxysmal atrial tachycardia, Ventricular Nol tachycardia Mania, BD, Agitation Migraine prophylaxis Valproic acid Ethosuximide Felbamate Oxcarbazepine Mania, BD I TGN Gabapentin Anxiety PHN, DPN, Phantom limb pain, RLS, Migraine prophylaxis Fibromyalgia Pregabalin GAD, Social phobia NeP, Fibromyalgia, PHN, Spinal cord injury Lamotrigine BD II (depression) Levetiracetam Bulimia nervosa, Binge-eating disorder, Alcohol dependence Migraine prophylaxis Topiramate Tiagabine Vigabatrin Zonisamide Binge-eating disorder Lacosamide Perampanel Rufinamide Ezogabine Eslicarbazepine acetate Clobazam Approved Indications by US FDA. Marvanova M, et al. Ment Health Clin 2016;6:8-20.

Pharmacokinetic properties (ADME) of AED

Pharmacokinetic profiles of conventional AED

AED (serum conc)	F (%)	Vd (L/Kg)	Protein binding (%)	T1/2 (h)	Metabolism & Elimination	Active metabolite
Carbamazepine 4-12 μg/mL (CBZ), <0.2- 2.0 μg/mL (epoxide)	85	0.8-2.0	76	12-17	H (100%): CYP3A4 (major), CYP1A2, CYP2B8	CBZ-10,11-epoxide
Phenobarbital 15-40 μg/mL	70-90	0.5-1.0	55	36-118	H: glucosidase, CYP2C9, CYP2C19, CYP2E1 R (20%): unchanged	No
Phenytoin 10-20 μg/mL (total), 1-2 μg/mL (free)	90-100	0.5-1.0	90	7-42	H (98%): CYP2C9 (major), CYP2C19	No
Valproic acid 50-100 μg/mL (total), 5-12.5 μg/mL (free)	100	0.1-0.2	90 (conc- dependent)	6-17	H (95%): beta-oxidation, UGT1A6, UGT1A9, UGT2B7, CYP2C9, CYP2C19	No
Ethosuximide 40-100 μg/mL	100	0.6-0.7	0	25-60	H: CYP3A4 (major), CYP2E1 R (20%): unchanged	No
Primidone 5-12 µg/mL (PRM), 15-40 µg/mL (PHB)	60-80	0.6-0.7	20-45 (PHB), <10 (PRM, PEMA)	10-12 (PEMA), 29-36 (PHB)	R (40-60%): unchanged and smaller amount of PEMA and PGB inactive H: CYP2C9/19, alcohol dehydrogenase PHB (15-25%) and amide hydrolysis PEMA (75%)	Phenobarbital (PHB) Phenylethylmalonamide (PEMA)

Marvanova M, et al. Ment Health Clin 2016;6:8-20.

Pharmacokinetic profiles of second generation AED

AED (serum conc)	F (%)	Vd (L/Kg)	Protein binding (%)	T1/2 (h)	Metabolism & Elimination	Active metabolite
Gabapentin 4-16 μg/mL	35-60	0.85	0	5-7	R (>90%): unchanged	No
Lamotrigine 4-18 µg/mL	<u>></u> 95	0.9-1.3	55	15-35	H (76%): UGT1A4	No
Levetiracetam 5-40 µg/mL	<u>≥</u> 95	0.5-0.7	<10	6-8	R (66%): unchanged Non-hepatic (30%): hydrolysis by type B esterase in WBC	No
Oxcarbazepine 10-35 μg/mL (MHD)	>90 prodrug	0.75 (MHD)	60 (OXC) 40 (MHD)	8-15 (MHD)	H (80%): cytosolic arylketone reductase (OXC), YGT (MHD) R (20%): unchanged	S-licarbazepine R-licarbazepine
Pregabalin N/E	<u>></u> 90	0.57	0	5-7	R (>95%): unchanged	No
Topiramate 5-20 μg/mL	<u>></u> 80	0.6-0.8	15	20-30	R (70%): unchanged H (30%): CYP2C19 and glucuronidation	No
Vigabatrin 0.8-36 µg/mL	60-80	0.8	0	5-8	R (95%): unchanged	No
Zonisamide 10-40 μg/mL	<u>≥</u> 90	1.0-1.9	40	27-70	H (70%): CYP3A4 (major), NATs (15%), CYP2C19 R (30%): unchanged	No
Felbamate 30-140 µg/mL	<90	0.7-1.0	25	22-25	R (50%): unchanged H (50%): CYP2E1 (major), CYP3A4 (20%), UGT (20%)	No
Tiagabine N/E	<u>></u> 90	1.0	96	5-9	H (98%): CYP3A4	No

Marvanova M, et al. Ment Health Clin 2016;6:8-20.

Pharmacokinetic profiles of third generation AED

AED (serum conc)	F (%)	Vd (L/Kg)	Protein binding (%)	T1/2 (h)	Metabolism & Elimination	Active metabolite
Brivaracetam	100	15-20	<20	7-8	R (9%): unchanged H: hydrolysis, CYP2C19	No
Clobazam 100-300 µg/mL	100	0.9-1.4	85 (CBZ), 70 (N-DMC)	18 (CBZ), 42 (N- DMC)	H (98%): CYP3A4 (major), CYP2C19, CYP2C6	N-desmethylclobazam (N- DMC, norclobazam)
Eslicarbazepine acetate N/E	>90 prodrug	2.7	<40	20-24	R (66%): unchanged Non-hepatic: hydrolysis by esterase to ELC (91%) H (33%): UGT	Eslicarbazepine Oxcarbazepine
Ezogabine N/E	60	2-3	80	8-10	H (50-65%): UGT1A4, NAT R (20-30%): unchanged	No
Gabapentin enacarbil N/E	75	0.85	0	5-7	R (>90%): gabapentin Non-hepatic: first-pass hydrolysis to GBP by carboxylesterase in enterocytes	Gabapentin
Lacosamide 10-20 µg/mL	100	0.5-0.8	<30	13	R (40%): unchanged H: demethylation, CYP2C19 (30%)	No
Perampanel 0.05-0.4 μg/mL	100	1.1	95	52-129	H (98%): CYP3A4 (major), CYP3A5	No
Rufinamide 10-40 μg/mL	<u>></u> 85	0.7-1.1	35	6-10	H: non-CYP hydrolysis by carboxylesterase	No

Marvanova M, et al. Ment Health Clin 2016;6:8-20.

AEDs	Protein binding (%)	Hepatic Metaboli	ism	Renally Excretion (%)	
		Phase I (CYP)	Phase II (UGT)		
Carbamazepine	75	3A4			
Clonazepam	85	3A4			
Diazepam	<mark>98</mark>	2C19, 3A4			
Ethosuximide	0	2E1, 3A4		20	
Lorazepam	<mark>93</mark>		2B15		
Midazolam	<mark>95</mark>	3A4			
Phenobarbital	55	2C9, 2C19		22	
Phenytoin	<mark>90</mark>	2C9, 2C1			
Valproic acid	<mark>90</mark>	B-oxidation, 2C9, 2C19	1A6, 1A9, 2B7		
Brivaracetam	<20	2C19, hydrolysis		9	
Clobazam	85	2C19, 3A4			
Felbamate	25	2E1, 3A4	UGT	50	
Gabapentin	0			>90	
Lacosamide	<15	2C19		40	
Lamotrigine	55		1A4		
Levetiracetam	0	Amidase		66	
Oxcarbazepine MHD	40	Cytosolic reductase	UGT	20	
Perampanel	95	3A4			
Pregabalin	0			>90	
Retigabine	80		UGT, NAT	20-30	
Rufinamide	35	Carboxylesterase			
Topiramate	15	СУР		30	
Vigabatrin	0			95	
Zonisamide	50	3A4, 2C19		35	

nderson GD, et al. Clin Pharmacokinet. 2014 Jan;53(1):29-49. doi: 10.1007/s40262-013-0107-0.

Differential pharmacology of AED

	1 st generation	2 nd generation	3 rd generation
Mechanism of action (MOA)	Simple MOAs (VGSC, GABA receptor)	Multiple MOAs or Specific target of action (SV2A, T-type VGCC, N- type VGCC, GAT, GABA-T, AMPA/kainite receptor)	Novel target of action (PAM at AMPA, slow- inactivated VGSC)
Pharmacokinetic properties - Absorption - Distribution - Metabolism - Elimination	Limited High % PB Mainly by CYP Inactive metabolite	Good Low %PB Minor route Unchanged form	Good/prodrug +/- Mainly by CYP Unchanged (some)
	Unsteadiness		
	Tiredness		
	Tiredness Restlessness Feelings of aggression		
vpe A adverse	Tiredness Restlessness		Always or often Sometimes Rareby Never
ype A adverse antiepileptic drug effects	Tiredness Restlessness Feelings of aggression Nervousness or agitation Headache Hair loss Problems with skin Double or blurred vision Upset stomach Difficulty in concentrating		Sometimes
	Tiredness Restlessness Feelings of aggression Nervousness or agitation Headache Hair loss Problems with skin Double or blurred vision Upset stomach		Sometimes
antiepileptic	Tiredness Restlessness Feelings of aggression Nervousness or agitation Headache Hair loss Problems with skin Double or blurred vision Upset stomach Difficulty in concentrating Trouble with mouth or gums Shaky hands Weight gain		Sometimes

Perucca P, et al. Neurology 2009;72:1223-9.

Country/Region Incidence of severe ACDR, per million persons year Incidence of HLA B°1502 in normal population, percent SIS/TEN, percent In general 2.6-7.1¹⁰, Boston 4.2¹⁰ (2 per 100.000 patient year exponure)²⁰ USA 0% in Cancasian and native American^{10,12}, Asian 4.9¹⁰ In general, 2-3⁵, Sweden 0.4, French 1.2 Germany 2.03 (2-9 per 100,000 patient year Rare (1-2)^{2,0,0} Induct (1¹⁰ Incidence of adverse South A Country/Region Incidence of severe Incidence of HLA B*1502 Incidence of HLA B*1502 in CBZ-ACDR, per million in normal population, SJS/TEN, percent persons year percent 8.5-27.510.39-40 83.341 • Thailand population and Malay 15.7, Chinese 5.7, Indian 0, Myazmese 100 Malay 75, Indian 100 carbamazepine-induced • Thailand 8.5-27.5*** 83.34 • Vietnam • Indonesia 16 Steven-Johnson Philippine (55 per 100.000 patie Ivatan (minority) 36⁴ Mambai 1.9⁴⁴, Kaadesh 6⁴⁴, Tamil Nada 0⁴⁴, Ibil 4⁴⁶, Parsi 0⁴⁷ Panjab 1⁴⁶ syndrome and toxic a India epidermal necrolysis • Sei Lanka Rse[®] • Japan 0.2* (17 per 100,000 ps • Korea 0.4^{s}

CRZ CLB ESL ETS FBM GBP LCM LEV LTG OKC PGN PER PHB PHT TGB RTG TPM VPA

.

.

Seizure approvation

LATE ONSET ADVERSE EVENTS Encechaiocathy

diantic sheirds

Nancreatitia Aver failure

Teratopenicity

Retinal dysh

.

.

.

-

68

0

Overview of

individual

antiepileptic

drugs

Schmidt D, Schachter SC. BMJ. 2014 Feb 28;348:g254. doi: 10.1136/bmj.g254.

adverse effects of

. . .

. . .

.

. .

•

.

.

CLB-sciobazers: CR2-scabenacepine: ESL-ensistentaaepine: ESL-entropaintiede, FMM-februrate: GRP-aphapentini. EX-i DIC-socia-trazepine: PER-presmpanet; PCB-pregibatin; PHB-phenobatiat; PHT-sphenytistic; PRM-sprinidoer; PCB-ESL-socia-traintie; SSJ-TEN-Sovens-Johnson syndrome of toxic epidemial necrolysis. Key – no increase. 🖗 ov nixi, . .

. .

:::

. .

. .

. .

. .

. .

• •

٠

. .

.

strigine

CBZ: exthanazepine, 515: Steven-Johanon syndrome, TEN: trail: epidermal secrolysis Data in brackart was quested from Newaria CBZ SISVTEN Reports 2000-3006, per 100,000 patient exposure year # Albeir ferepensey based on volumters in the U.S. National Marrow Done Programs¹⁰

Lim KS, et al. Neurology Asia 2008;13:15-21.

บัตรประจำตัว ระบุ ชื่อ นามสกุลผู้ป่วย ผลตรวจ HLA-8*1502 และคำแนะนำดังนี้ (ออกโดยหน่วยงานของโรงพยาบาล) 1. หลีกเลี่ยงการใช้ยา carbamazepine

2. ควร ระมัคระวังในการให้ยา oxcarbazepine, phenytoin, phenobarbital, lamotrigine ที่อาจเกิด cross-reactivity

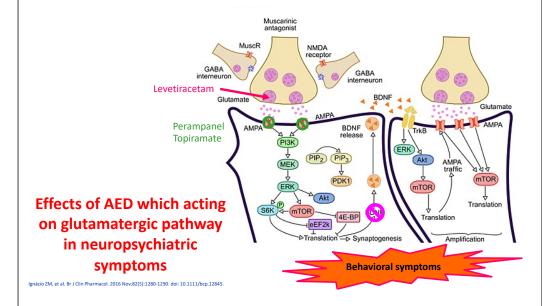
Dosage and administration of lamotrigine

Weeks 1 & 2	Weeks 3	8.4 \	Neek 5	Week 6	
25 mg/day	50 mg/day	100 mg/		Target dose 200 mg/day	
Taking valproa	ite				
Weeks 1 & 2	Weeks 3	8.4 \	Neek 5	Week 6	
25 mg/every oth day	er 25 mg/day	50 mg/d		Target dose 100 mg/day	
Taking drugs I valproate	nown to increa	se the clearance	of lamotrigin	e and not taking	
Weeks 1 & 2	Weeks 3 & 4	Week 5	Week 6	Week 7	
50 mg/day	100 mg/day in divided doses	200 mg/day in divided doses	300 mg/day in divided dose:		

Doses above target dose are not recommended

To avoid an increased risk of rash, the recommended initial dose and subsequent dose escalations should not be exceeded

Disturbances of cognitive abilities of AED


Major cognitive effects of AEDs

- Impair attention/vigilance
- Impair psychomotor speed (significant cognitive slowing and verbal fluency, word-finding difficulties)
- Secondary effects on other cognitive functions

Factors associated side effects

- Increase dose with rapid initiation
- Higher dosages and concentrations
- Use of polytherapy

Meador KJ. Neurology. 2002;58(Suppl 5):S21-S26.

AED and neuropsychiatric symptoms

- Based on available data, levetiracetam, perampanel, and topiramate were associated with increase rate of irritable, hostility or aggression, particularly in patients with history of psychiatric symptoms
- Should closely monitor patients for these symptoms, especially within the first 6 months of starting or titrating AEDs
 - ➡ However, this can be occurred within 1-3 years after treatment

Brodie MJ, et al. Pharmacol Rev. 2016 Jul;68(3):563-602. doi: 10.1124/pr.115.012021

Relative teratogenic risk profiles of antiepileptic drugs

Antiepileptic Drug	Use (Seizure Types)	Major Malformations	PDA Pregnancy Category	Panel Opinion*
Carbamazepine	Partial, tonic-clonic	Facial, spina bifida, cardiac	D	Caution
Ethosuximide	Absence	No specific	C	Sade
Felbamate	Partial, tonic-elonic, absence, myoclonic	Unknown	c	Unknown
Gabapentin	Partial, tonic-clonic	Unknown	с	Unknown†
Lamotrigine	Partial, tonic-clonic, absence, myoclonic, atonic	Unknown	с	Safe?‡
Levetirecetam	Partial, tonie-clonic, ?absence, myoclonic	Unknown	с	Unknown
Oxcarbanepine	Partial, tonie-elonie	Unknown	с	Unknown†
Fhenobarbital	Partial, tonie-elonic, 7myoclonic	Cieft palate, heart	D	Caution
Phonytoin	Partial, tonicclonic	Cleft pelate, heart	D	Caution
Tisgabine	Partial, tonic-clonic	Unknown	с	Unknown
Topiramate	Partial, tonie-clonic, myoclonic, atonic	Unknown	c	Unknown†
Valproste	Partial, tonic-clonic, absence, myoclonic, atenic	Spino bifida	D	Caution
Zonisamide	Partial, tonic-elonie, myoclonic, ?absence, atonic	Unknown	с	Unknown†

* At an experter ironsthable meeting. "Epideopy in Women: The Biological Basis for the Pornals Experience, ? Advancy 23, 2003, New York, NY, Fande optimation optimate based on elimical experiences and does not imply results from a scientific controlled study, which is unavailable at this trans."

Based on 30 feal outcomes with first-trimester exposure to monotherapy; major malformation rate 2.8%.¹⁰ Manufacturer cites insut ficient data to conclude confidently that drug is safe during program.

กระเพือกใช้หากับชักในมัพณิงที่ตั้งครรภ์ 🚯

- ໂຍທຳ້ວນໃນດາາເທົາການທີ່ສາວາມເສັດປາທີ່ຮອກກາວກໍໄມຄາງເດີມເຫັນຊັ້ນ 2-3 ເກົາ ຮອບຮູ້ຫລືງເຫັນໃຫ້ຮັບປາວສາການ ຍາກັນທັກ (**คราวเที่ 23**) ໂອຍໂດກາທາງເມີດອະເອັ້ນເກັບຫນັດຮອບຍາກັນທັກຫນາກ ແລະຈຳນານຮອບກັບເອັກເປັນເດົາຕ້ອງ - ຍາກັນຫຼັກກີ່ມີວ່າຂາງແບກາງກ່ອງໃຫ້ເກັກສາວາມສິສປາທິສອອກາງຈາກໃນກາງກໍເຮົາເອນ ໂຄ້ແດງ - ຍາກັນຫຼັກກີ່ມີວ່າຂາງແບກາງກ່ອງໃຫ້ເກັກສາວາມສິສປາທິສອອກາງຈາກໃນກາງກໍເຮົາເອນ ໂຄ້ແດງ.

henobarbital, phenytoin และ volproate - ถ้ามีความจำเป็นจะต้องให้ยา valproate ควรได้ในขนาดที่ต่ำกว่า 800 มิลลิกวัมต่อวัน เพื่อลดไอกาล

การเกิดความมิตปกติของทารกในครรภ์

ตารามที่ 23 อัตราการเกิด congenital mallormation จากยากับซักซนิดช่ามๆ

carbamazepine	2.1-6.3
phenytoin	2.6-7.4
phenobarbital	2.9-6.5
sodium valproate	6.1-16.3*
lamotrigine	1.4-5.2
gabapentin	0.8-5.9**
topiramate	2.4.8**
levetiracetam	2**

* ສາກໃຫ້ sodium valproate ໃນກະນາຍິມັນໃນ 700-1000 mg ສ່ອງິນ ອີສງາກການທີສ malformation ຈະອຍູໃນຫ່ວະໂອຍສະ 6-9 ** ຈຳແວນຢູ່ບ້ວຍກິ່ງກອກນັ້ນ registry ອັຟຈຳນວນໃນພາກ

Lamotrigine Levetiracetam Carbamazepine Phenytoin Phenobarbital Topiramate[®] Valproic acid Increasing Risk

Pennell PB. Neurotherapeutics. 2016 Oct;13(4):811-820. doi: 10.1007/s13311-016-0464-0.

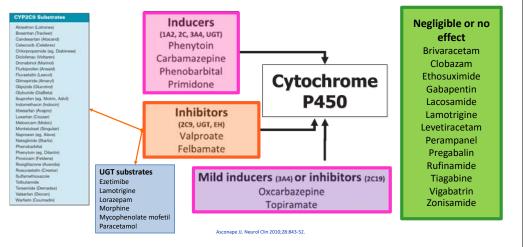
QTc prolongation by AED and risk of torsade de pointes

- Both experimental and clinical evidence suggest that treatment with AEDs appears to add relatively little risk of QT prolongation (and potential malignant arrhythmia) in most patients
 - Carbamazepine has high reported
- Special populations requiring greater caution
 - patients with underlying cardiac dysfunction, older individuals (>65 years), female patients, or those with electrolyte imbalances (such as hypokalemia or hypomagnesemia), patients requiring combination therapy with any medication proven to cause QT interval prolongation
 - Monitoring of electrolytes and ECG evaluation in these patients would seem prudent

Non-cardiac medication and QT interval prolongation

Drugs that cause QT interval prolongation seem to share a common property in that they can all block IKr channels

Class of medications	Examples
Antihistamines	Terfenadine, astemizole
Antipsychotics	Haloperidol, droperidole, thioridazine, chlorpromazine
Fluoroquinolone antibiotics	Levofloxacin, moxifloxacin, gemifloxacin, gatifloxacin
Macrolide antibiotics	Erythromycin, clarithromycin, telithromycin
Tricyclic antidepressants	Desipramine, imipramine, doxepin
Selective serotonin reuptake inhibitors	Paroxetine, sertraline, doxepin, venlafaxine, fluoxetine, norfluoxetine, fluvoxamine, citalopram
Opioids	Methadone
5HT3-receptor antagonists	Ondansetron, dolasetron, granisetron
5HT1D agonists	Sumatriptan, naratriptan, zolmitriptan
Prokinetic agents	Cisapride, domperidone


Feldman AE, et al. Epilepsy Behav 2013;26:421-6.

Feldman AE, et al. Epilepsy Behav 2013;26:421-6.

Differential pharmacology of AED

Properties	1 st generation	2 nd generation	3 rd generation		
Mechanism of action (MOA)	Simple MOAs (VGSC, GABA receptor)	Multiple MOAs or Specific target of action (SV2A, T-type VGCC, N- type VGCC, GAT, GABA-T, AMPA/kainite receptor)	Novel target of action (PAM at AMPA, slow- inactivated VGSC)		
Pharmacokinetic properties					
- Absorption	Limited	Good	Good/prodrug		
- Distribution	High % PB	Low %PB	+/-		
- Metabolism	Mainly by CYP	Minor route	Mainly by CYP		
- Elimination	Inactive metabolite	Unchanged form	Unchanged (some)		
Adverse effects		Individualized			

Potential to develop drug-drug interactions of AED

Expected changes in plasma concentrations when an AED is added to a pre-existing regimen

-					Pre-exi	sting AE	D								
AED added	PB	PHT	PRM	ETS	CBZ	VPA	OXC	LTG	GBP	TPM	TGB	LEV	ZNS	VGB	FBM
PB		PHT↑↓	NCCP	ETS↓	CBZ↓	VPA↓	H-OXC↓	LTG↓	\leftrightarrow	ТРМ∜	TGB↓	\leftrightarrow	ZNS↓	\leftrightarrow	FBM↓
PHT	PB↑		PRM↓ PB↑	ETS↓	CBZ∜	VPA↓	H-OXC↓	LTG↓	\leftrightarrow	TPM↓	TGB∜	\leftrightarrow	ZNS∜	\leftrightarrow	FBM∜
PRM	NCCP	PHT↑↓		ETS↓	CBZ↓	VPA↓	?	LTG↓	\leftrightarrow	ТРМ∜	TGB↓	\leftrightarrow	ZNS↓	\leftrightarrow	FBM↓
ETS	\leftrightarrow	\leftrightarrow	NE		\leftrightarrow	VPA↓	NE	NE	NE	NE	NE	NE	NE	NE	NE
CBZ	\leftrightarrow	PHT↑↓	PRM↓ PB↑	ETS↓		VPA↓	H-OXC↓	LTG∜	\leftrightarrow	TPM↓	TGB∜	\leftrightarrow	ZNS∜	NE	FBM∜
VPA	PBÎ	PHT↓*	PBÎ	ETSÎ↓	CBZ-E1	۲	\leftrightarrow	LTGÎ	\leftrightarrow	TPM↓	\leftrightarrow	\leftrightarrow	\leftrightarrow	NE	\leftrightarrow
OXC	PB↑	PHT↑	?	?	CBZ↓	\leftrightarrow		LTG↓	NE	?	?	NE	?	NE	?
LTG	\leftrightarrow	\leftrightarrow	NE	NE	\leftrightarrow	\leftrightarrow	NE		NE	NE	NE	\leftrightarrow	\leftrightarrow	NE	NE
GBP	\leftrightarrow	\leftrightarrow	NE	NE	\leftrightarrow	\leftrightarrow	NE	NE		NE	NE	\leftrightarrow	NE	NE	NE
TPM	\leftrightarrow	PHT↑	\leftrightarrow	NE	\leftrightarrow	VPA↓	?	?	NE		?	NE	?	NE	?
TGB	\leftrightarrow	\leftrightarrow	\leftrightarrow	NE	\leftrightarrow	\leftrightarrow	NE	NE	NE	NE		NE	NE	NE	NE
LEV	\leftrightarrow	\leftrightarrow	\leftrightarrow	NE	\leftrightarrow	\leftrightarrow	NE	\leftrightarrow	\leftrightarrow	NE	NE		NE	NE	NE
ZNS	\leftrightarrow	\leftrightarrow	NE	NE	CBZ↑↓	\leftrightarrow	?	\leftrightarrow	NE	NE	NE	NE		NE	?
VGB	PB↓	PHT↓	PRM↓ PB↓	NE	CBZ↑	\leftrightarrow	NE	NE	NE	NE	NE	NE	NE		NE
FBM	PBÎ	PHTÎ	?	?	CBZ↓ CBZ-E1	VPA1Ì Ì	\leftrightarrow	\leftrightarrow	NE	?	?	NE	?	\leftrightarrow	

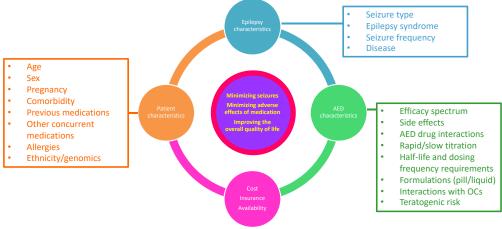
PB-phenobarbital; PHT-phenytoin; PPM-primidone; ETS-ethosukinidig; CBZ-earbanazepine; VFA-valgoto acid; OXC=oxcarbazepine; LTG-alemotrighe; GBP-gabapenth; TPM-tophranate; TGB-tlagabine; LEV-leveltracettm; ZNS-zonisamide; VGB=v(gabatrin; FBM-felibarnate; H-OXC=10-hydroxy-oxcarbazepine (active metabolite of OXC); CBZ-E-carbamazepine:10,11-epoxide. NE-none expected; +free (pharmacologically active) concentration may increase; NCOZ+ont commonly coprescribed; +>No change; j-a minor (or inconsistent) decrease in plasma concentration; J-a clinically significant decrease in plasma concentration; T-a minor (or inconsistent) increase in plasma concentration;

Patsalos PN, et al. Lancet Neurol 2003;2:347-56.

Concerning issues on DDI of AED

Differential pharmacology of AED

Properties	1 st generation	2 nd generation	3 rd generation		
Mechanism of action (MOA)	Simple MOAs (VGSC, GABA receptor)	Multiple MOAs or Specific target of action (SV2A, T-type VGCC, N- type VGCC, GAT, GABA-T, AMPA/kainite receptor)	Novel target of action (PAM at AMPA, slow- inactivated VGSC)		
Pharmacokinetic					
properties					
- Absorption	Limited	Good	Good/prodrug		
- Distribution	High % PB	Low %PB	+/-		
- Metabolism	Mainly by CYP	Minor route	Mainly by CYP		
- Elimination	Inactive metabolite	Unchanged form	Unchanged (some)		
Adverse effects		Individualized			
Potential to develop drug	High risk	Low to moderate	Low to moderate		
interaction	- CYP substrate				
	- CYP inducers / inhibitors				


Advantages and disadvantages of selected AED

AEDs	Advantages	Disadvantages
Carbamazepine	High efficacy	Relatively low therapeutic index, enzyme inducer, rash
Valproate	Broad spectrum, IV, rapid titration	Weight gain, encephalopathy, tremor
Gabapentin	Rapid titration, few AEs, no drug interaction	Limited efficacy, multiple-daily dosing, renal clearance
Pregabalin	No drug interaction	Somnolence, weight gain
Lamotrigine	Broad spectrum, no cognitive AEs, psychotropic effect	Rash, slow and complex titration
Levetiracetam	High efficacy, broad spectrum, rapid titration, IV, no interaction, no cognitive AEs	Psychiatric dysfunction, dose adjustment according to the GFR
Oxcarbazepine	High efficacy, better PK/AE profile than carbamazepine	Rash, hyponatremia
Topiramate	High efficacy, broad spectrum, low PK interaction	Cognitive AEs, weight loss, glaucoma, renal stone
Zonisamide	High efficacy, broad spectrum, low PK interaction, once-daily dosing	Cognitive AEs, weight loss, renal stone
Lacosamide	High efficacy, rapid titration, IV, no PK interaction, low cognitive SE	Dizziness, arrhythmia
Perampanel	Broad spectrum, long half-life	Somnolence, dizziness

AEDs, antiepileptic drugs; IV, intravenous administration; AEs, adverse effects; GFR, glomerular filtration rate; PK, pharmacokinetic; SE, status epilepticus.

Lee SK. J Epilepsy Res. 2019;9(1):27-35.

Selection the AED for individualized patients

Moosa ANV. Continuum (Minneap Minn). 2019 Apr;25(2):381-407. doi: 10.1212/CON.000000000000712.

Concerning factors for choosing AED in elderly

Factor	CBZ	PHT	РВ	VPA	GBP	LMT	LEV	OXC	PGB	ТОР	ZNS	BVR	CLO	LAC	PER	RUF
High protein bound		Х		Х											Х	
Metabolism by CYP	х	х	х	х		х				х	х	х	х	х	х	
Eliminated by renal					х		Х	Х	Х	Х				Х		
Removed by HD					х		х		Х	х				х		
Additional dose after HD			х		х	Х	Х		Х	х				Х		х
Cognitive impairment	х	х	х	х						х	х		х			
Osteoporosis	х	х	х													
Hematologic toxicity	х	х	х	х												
Rash	х	х	х			Х		х								
Cardiac side effects	х	х						х						х		х
Hyponatremia	х							Х								
Psychiatric effects							х			х					х	
↑/↓ bodyweight	Ŷ			Ŷ	Ŷ				Ŷ	\downarrow	\downarrow					
\uparrow/\downarrow comedications	\downarrow	\downarrow	\downarrow	Ŷ				1/↓		1∕↓						
Once daily	х	х	х									х			х	

Dose adjustments for AED in kidney disease

Brivaracetam	50-100 mg 2×/d	No adjustment needed	No adjustment needed	No adjustment needed	No adjustment needed
Carbamazepine	200-800 mg 2×/d	No adjustment needed	No adjustment needed	No adjustment needed	Supplemental dose not needed
Clobazam	20-40 mg daily	No adjustment needed	No adjustment needed	No adjustment needed	Supplemental dose not needed
Eslicarbazepine	800-1,600 mg daily	No adjustment needed	600 mg daily max	600 mg daily max	Not established; may need supplemental dose
Feibamate	1,200-3,600 mg	50% dose reduction	Insufficient data, reduce dose by 50%; use w/ caution	Insufficient data, reduce dose by 50%; use w/ caution	Insufficient data, avoid
Gabapentin	300-1,200 mg 3×/d	200-700 mg 2×/d	200-700 mg daily	100-300 mg daily; use w/ caution	100%-200% daily dose post-HD
Lacosamide	50-200 mg 2*/d	No adjustment needed	Slow titration; max 300 mg daily	Slow titration; max 300 mg daily	50% daily dose as post-HD supplement
Lamotrigine	50-250 mg 2×/d	Dose reduction may be needed; use w/ caution	Dose reduction may be needed; use w/ caution	Dose reduction may be needed; use w/ caution	Consider post-HD supplemental dose
Levetiracetam	500-1,500 mg 2×/d	50% dose reduction	50% dose reduction	50% dose reduction	500-1,000 mg daily & 50% daily dose as post-HD supplement
Oscarbazepine	300-1,200 mg 2×/d	No adjustment needed	Initiate at 1/2 of usual daily dose	Initiate at 1/2 of usual daily dose	Insufficient data; may monitor levels*; proceed w/ caution
Perampanel	4-12 mg daily	Not established; likely no adjustment needed	Not established; likely no adjustment needed	Not established; likely no adjustment needed	Not established; supplementation likely not needed
Phenobarbital	60-100 mg 2×/d or 3×/d	Use w/ caution; dose reduction may be needed	Use w/ caution; dose reduction may be needed	Use w/ caution; dose reduction may be needed	Consider 50% of daily dose in PD & as post-HD supplement
Phenytoin	150-200 mg 2×/d or 3×/d	Oral loading dose not needed; otherwise no change	Oral loading dose not needed; otherwise no change	Oral loading dose not needed; otherwise no change	Oral loading dose not needed; otherwise no change
Pregabalin	600 mg max daily	50% dose reduction	25-150 mg daily	25-75 mg daily	Replacement dose 25-150 mg post-HD
Rufinamide	200-1,600 mg 2*/d based on weight	No adjustment needed	No adjustment needed	No adjustment needed	30% supplemental dose post-HD
Tiagabine	32-56 mg	No adjustment needed	No adjustment needed	No adjustment needed	Supplemental dose not needed
Topiramate	100-200 mg 2×/d	50% dose reduction	50% dose reduction	50% dose reduction	50% daily dose as post-HD supplement
Valproic acid	30-60 mg/kg/d 2×/d to 3×/d	No adjustment needed	No adjustment needed	No adjustment needed	Supplementation usually not given; high-flux dialysis may remove the drug
Vigabatrin	1,000-3,000 mg daily	25% dose reduction	50% dose reduction	75% dose reduction	50% supplemental dose post-HD
Zonisamide	100-600 mg daily	No adjustment needed	Unclear, use w/ caution	Unclear, use w/ caution	Give daily after HD; 50% supplemental dose may be needed for post HD seizures

GFR > 60 GFR 30-59 GFR 15-29 GFR < 15 Hemodialysis

Product formulations of AED

Oral route

- Immediate formulation
- Controlled-release formulation
 - Carbamazepine CR tablet
 - Phenytoin SR capsule
 - Sodium valproate SR tablet

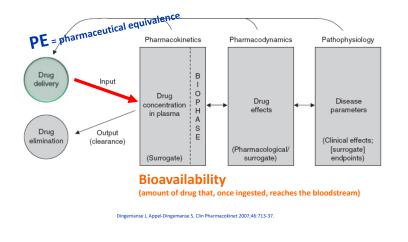
Injection route

- ●Intramuscular: midazolam, fosPHT, PB
- Intravenous

Títoff V, et al. Am J Kidney Dis. 2019 Jan;73(1):90-101. doi: 10.1053/j.ajkd.2018.03.021.

Antiepileptic drugs, recommended dosage, and laboratory monitoring

AED


Drug	Half life (hours)	Formulations	Starting dose (mg/kg per day)	Maintenance dose (mg/kg per day)	Dosing schedule	Clinical/ laboratory monitoring
Carbamazepine	25-65	tab, SR tab, susp	10	10-35	TID	CBC, LFT, hyponatremia, serum levels
Phenobarbital	24-140	tab, susp, IV	3	3-6	QD - BID	Sedation, CBC, LFT, serum levels
Phenytoin	7-42	cap, SR cap, susp, IV	4	4-8	QD - TID	CBC, LFT, serum levels
Valproate	5-15	sugar-coated tab, ER tab, susp, IV	15	15-45	TID – QID	CBC, LFT, serum levels
Gabapentin	4-7	cap, tab	10	25-50	TID	Weight
Lamotrigine	6-11	tab	0.15-0.5	5-15	BID	Rash, CBC, LFT
Levetiracetam	6-8	tab, ER tab, liquid, IV	10	40-100	BID	Behavior
Oxcarbazepine	7-9	Tab	8-10	30-46	BID	CBC, LFT, hyponatreamia
Pregabalin	6-8	cap, tab	3.5	Up to 14	BID – TID	Weight
Topiramate	8-12	tab, sprinkle cap	1-3	5-9	BID	Weight, renal stones, cognition, ocular pressure
Vigabatrin	6-10	tab	350-500 mg	1,000-3,000 mg	BID	Vision, behavior
Zonisamide	63	tab	2-4	4-12	BID	CBC, weight, renal stones, rash
Brivaracetam	9	tab, IV	1	2-4	BID	Behavior
Clobazam	36-42	tab	5 mg	20-40 mg	BID	Sedation
Lacosamide	13	tab, IV	1	2-8	BID	EKG (PR interval)
Perampanel	105	tab	2 mg	8-12 mg	QHS	Behavior
Rufinamide	6-10	tab	10	45	BID	EKG (QT interval)

Sankaraneni R, et al. Pediatr Ann. 2015 Feb;44(2):e36-42. doi: 10.3928/00904481-20150203-10.

Differential pharmacology of AED

Properties	1 st generation	2 nd generation	3 rd generation		
Mechanism of action	Simple MOAs (VGSC, GABA	Multiple MOAs or	Novel target of action		
(MOA)	receptor)	Specific target of action	(PAM at AMPA, slow-		
		(SV2A, T-type VGCC, N-	inactivated VGSC)		
		type VGCC, GAT, GABA-T,			
		AMPA/kainite receptor)			
Pharmacokinetic					
properties					
- Absorption	Limited	Good	Good/prodrug		
- Distribution	High % PB	Low %PB	+/-		
- Metabolism	Mainly by CYP	Minor route	Mainly by CYP		
- Elimination	Inactive metabolite	Unchanged form	Unchanged (some)		
Adverse effects		Individualized			
Potential to develop drug	High risk	Low to moderate	Low to moderate		
interaction	- CYP substrate				
	- CYP inducers / inhibitors				
Formulation and	IR, CR, Inj	IR, Inj	IR, Inj		
administration	2-3 times/day	1-2 times/day	2 times/day		

Relationship of PK-PD-diseases: Concept of generics and bioequivalence

Recommendations and considerations on the use of generic AEDs for treatment of epilepsy

- Generic AEDs that are bioequivalent to brand AEDs represent a valuable choice in the management of epilepsy, particularly for patients initiating monotherapy or as adjunctive treatment in patients with persistent seizures
- Generic substitutions are <u>not recommended</u> in patients who achieved seizure remission
- Switches between one generic AED to another should preferably be <u>avoided</u>
- ER or modified release (MR) formulations of AEDs should <u>not be used</u> <u>interchangeably</u> with IR brand or generic products

Bialer M. Epilepsia 2007;48:1825-32.