Other treatments: KD& VNS

Dr Krisnachai Chomtho MD DCH MRCPCH Lecturer in pediatric neurology King Chulalongkorn Memorial Hospital

Pharmocologic Rx

- 1st drug response 47%
 2nd & 3rd drug response 14%
- Polytherapy response 3%
- Many are intractable
 Uncontrolled by 2 drugs at proper dose
 Kwan, P. and M.J. Brodie, *Early identification of refractory* epilepsy: N Engl J Med, 2000. 342(5): p. 314-9.

Neuromodulations

- Vagal nerve stimulation (VNS)
- Deep brain stimulation (DBS) *
- Responsive neuro-stimulation (RNS) *
- External Trigeminal Nerve Stimulation * (eTNS)
- Transcranial magnetic stimulation * (TNS)

GLUT1 deficiency

GLUT1 protein

- transfers glucose from blood to CSF
- Low CSF glucose, normal plasma glucose
- No other cause (CNS infection/ SAH)

Intractable Sz, MR, movement disorder
 Ketone → main energy source

PDHD deficiency

- Mitochondrial dysfunction
- Lactic acidosis
- "Pyruvate-to-Acetyl CoA" defect
- Intractable Sz
- Ketone → bypass to TCA cycle

Pre-KD evaluation*

- Counseling
- Sz assessment
- Nutritional evaluation
- Lab evaluation

Classical KD

- Widely used
- 4: 1 ratio of fat: protein carbohydrate
- Main fat source = LCT
- Adequate protein > 1 g/kg
 Low carb just to prevent hypoglycemia
- Calorie control = 75 100% requirement
 Fluid restriction not necessary

MCT KD

- Increasingly used→ better ketosis
- 30%-60% fat: total energy
- More carbohydrate allowance
- Less restrictive, bigger meal
- Similar efficacy to LCT
- MCT can't be cooked → not palatable

Maintenance phase Ketosis induction Gradual initiation Efficacy evaluation after 3 month - without fasting Neuro - admission = optional - seizure control - slower but comparable Sz control at 3 m - cognitive improvement - lower initial side effect urine ketone - compliance serum ketone - Sz control Bergqvist, A.G., et al., Fasting versus gradual initiation of the ketogenic diet: a prospective, randomized clinical trial of efficacy. Epilepsia, 2005. **46**(11): p. 1810-9.

Maintenance*

- GI & nutritional assessment
- Blood tests
- Supplements
- Oral citrate
- Adverse effects
- Sick rules

Modified Atkins

- Similar composition to classical KD
- 1: 1 ketogenic ratio
- Restrict carbohydrate (10-20 g/d)
- No limit on protein, fluids, and calories
- Easier meal planning
- Preliminary effective

Kossoff et al. Epilepsy Behav 2007:432–436.

Vagal nerve stimulation

- A repetitive stimulation via left vagal nerve
- beneficial effects on Sz
 - acute abortive effect
 - acute prophylaxis
 - long-term progressive prophylaxis
- proven in focal& generalized & in pediatrics

Stimulation Parameter Setting

		MEDIAN SETTINGS PED		
PARAMETER	TYPICAL RANGE	<u>3 M</u>	<u>12 M</u>	
Output current	0.25–3.5 mA	1.25 mA	1.75 mA	
Signal frequency	20–30 Hz	30 Hz	30 Hz	
Pulse width	250–500 µs	500	500	
Signal on time	7–270 s	30 s	30 s	
Signal off time	12 s–180 min	5 min	3 min	

Efficacy

- High was better than low stimulation
- Well tolerated in both high and low setting
- 50% Sz reduction = 30 50%
- Median Sz frequency reduced by 23 - 58% at 3 m, and 31 - 58% at 6 m
- Magnet activation reduced 40 -60% in duration and intensity of Sz

Adverse effects

Associated with implantation

- hoarseness
- cough
- pain
- paresthesia.

Associated with stimulation

- hoarseness
- dyspnea

Deep brain stimulation

- Disrupts regulatory feedback loops
- Closed-loop, continuous stimulation
- VNS disrupts the loops indirectly
- DBS disrupts the loops directly.

Deep brain stimulation

- Different stimulation targets being studied
- Several small studies good efficacy
- A Large RCT in 2010 (SANTE)
 - 110 pt
 - Anterior Nucleus of the Thalamus
- 40- 60% decrease in median Sz frequency in 1 & 2 y

RNS				
A Large RCT in 2014				
- 191 pt				
- active VS sham stimulation				
- followed by open-label period				
→ 37.9 % VS 17.3% Sz reduction (p=0.012)				
→ Sz reduction to 53% at 2 y				
→ Responder rate 38% (6m), 53% (2 y)				

Authors & Year	No. of Patients	Target	Seizure Frequency Reduction Gr		
			Treatment	Sham	
Ben-Menachem et al., 1994	114	VNS	25%	6%	
Handforth et al., 1998	196	VNS	28%	15%	
Fisher et al., 2010	110	ANT	40.4%	14.5% (median)	
Morrell et al., 2011	191	direct-seizure foci	37.9%	17.3%	

eTNS	Table. Trigeminal Nerve Stimul	ation: Major R	esults	
	Endpoint	Treatment	Control	Significance
Non-invasive	Median change in number of seizures per month	-1.4	-0.5	P within group, .10; between groups, .51
12 h during sleep An RCT in 2013	50% responder rate at 18 weeks (%)	40.5	15.6	P within group, .0136; between groups, .078
- 50 pt \rightarrow 18 wk	50% responder rate, entire treatment period (%)	30.2	21.1	P between groups, .31; odds ratio, 1.73
- 50% Sz reduction in 40% (p=0.78)	Time to fourth seizure at baseline (d)	12.5	23	
	Time to fourth seizure with treatment (d)	15.0	18	
Phase III- ongoing	Seizure frequency, response ratio	-13.9	-9.0	P within group, .04; between groups, .06
	Change in Beck Depression Inventory score	-8.13	-3.95	<i>P</i> within and between groups, 0.02; odds ratio for remission, 5.5 ($P = .002$)

rTMS

- brief, high-current magnetic pulse
- Low frequency decrease cortical excitability
- rapid-rate can induce a seizure

rTMS

- small non-RCT
- Only 1 small RCT
- decrease Sz frequency & interictal discharges
- Some showed controversial results
- More large, well designed studies required

