

Seizure Type VS Epileptic Syndrome

- A seizure type is determined by the patient's behavior and EEG pattern during ictal event
- An epileptic syndrome is defined by
 - Age
 - Seizure type(s)
 - Etiology
 - Neurological status
 - Natural history
 - EEG (ictal & interictal)
 - Response to AEDs

ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์โรงพยาบาลรามาธิง Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol Universi

Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009 *†Anne T. Berg, 15amuel F. Berkovic, §Martin J. Brodie, ¶leffrey Buchhalter, #*9}. Helen Cross, ††Walter van Emde Boas, ‡‡Jerome Engel, §\$Jacqueline French, ¶¶Tracy A. Glauser, ##Gary W. Mathern, ***Solomon L. Moshé, [Douglas Nordli, ††Perrine Plouin, and †Ingrid E. Scheffer *Epilepsis, 32(6):1085–1062, 2011 doi: 10.1111/j.1518-107.201.0101.x **CRITICAL REVIEW AND INVITED COMMENTARY New concepts in classification of the epilepsies: Entering the 21 st century *Anne T. Berg and †Ingrid E. Scheffer *Epilepsy Center, Nethwestern Children's Hennotal Hospital, Chicago IL, U.S.A.: and fEpilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, and Department of Paedistrics, University of Melbourne, Royal Children's Hoppotal, Melbourne, Vic., Australia

Advantage of Determination of Electro-clinical Syndrome

- Drives the etiologic evaluation
- Determines the best choice AEDs
- Suggests duration of AED therapy
- Broad forecasts the prognosis & comorbid
- Useful tool for genetic linkage analysis

ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์โรงพยาบาลรามาชิบดี

Idiopathic Epilepsy Syndromes (IES)

- Idiopathic Generalized Epilepsies (IGE)

 - Childhood absence epilepsy (CAE)
 Generalized epilepsy with febrile seizures plus (GEFS+)
 - Juvenile myoclonic epilepsy (JME)
 - Epilepsy with myoclonic absences
 - Juvenile absence epilepsy (JAE) - Epilepsy with grand mal (generalized tonic-clonic) seizures on awakening
- Benign myoclonic epilepsy in infancy Idiopathic Focal Epilepsies (IFE)
 - Benign childhood epilepsy with centrotemporal spikes (BCECTS)

 - Benign childhood occipital epilepsy (BCOE)
 Benign familial neonatal/infantile seizures (BFNS, BFNIS, BFIS)
 - Autosomal nocturnal frontal lobe epilepsy (ADNFLE)

Engel, Epilepsia 42:796-803, 200

A girl with frequent staring spells

Idiopathic Generalized Epilepsy ILAE 1989

Benign myoclonic epilepsy in infancy Generalized epilepsy with febrile seizures plus* Epilepsy with myoclonic absences Epilepsy with myoclonic-astatic seizures Childhood absence epilepsy Idiopathic generalized epilepsies with variable phenotypes

- Juvenile absence epilepsy
- Juvenile myoclonic epilepsy
- Epilepsy with generalised tonic-clonic seizures

only

Typical Absence Seizures

A sudden onset, interruption of ongoing activities, a blank stare, possibly a brief upward rotation of the eyes.

If the patient is speaking, speech is slowed or interrupted, if walking, he stands transfixed; if eating, the food will stop on his way to the mouth. Usually the patient will be unresponsive when spoken to.

The attack lasts from a few seconds to half a minute and evaporates as rapidly as it commenced.

New ILAE Diagnostic Scheme vs ILAE Classification 1989

(1). The syndromes of JAE, JME and IGE with GTCS only are considered as phenotypical variants of IGE of adolescence

(2). A new syndrome of 'IGE with GTCS only' has been proposed to replace 'epilepsy with GTCS on awakening'

(3). 'Epilepsy with myoclonic-astatic seizures' and 'epilepsy with myoclonic absences' are included among idiopathicgeneralised epilepsies; these were previously categorised as symptomatic or cryptogenic generalised epilepsies.

(4). 'Generalised epilepsy with febrile seizures plus' is proposed as a new syndrome in development

Typical Absence Seizures

- · Absence with impairment of consciousness only.
- Absence with mild clonic components.
- · Absence with atonic components.
- · Absence with tonic components.
- Absence with automatisms.
- · Absence with autonomic components.
- · Mixed forms of absence

	Absence	CPS
Duration for less than 30 sec	as a rule	exceptional
Duration for more than 60 sec	exceptional	as a rule
Daily frequency	as a rule	rare
Simple automatisms	frequent	Frequent
Complex automatisms	exceptional	Frequent
Bilateral facial myoclonic jerk	frequent	exceptional
Sudden onset and termination	as a rule	Frequent
Postictal symptoms	never	frequent

Absence Epilepsy

- Childhood absence epilepsy
- Juvenile absence epilepsy

	Absence	CPS
Evolving to other focal seizures	never	frequent
Elicited by photic stimulation	frequent	exceptional
Reproduced by hyperventilation	As a rule	exceptional
EEG		
Ictal: generalized 3-4 Hz spike- wave	exclusive	never
Interictal generalized discharges	frequent	exceptional
Interictal focal abnormalities of slow wave	exceptional	frequent
Normal EEG in untreated state	exceptional	frequent

Childhood Absence Epilepsy

- Incidence: 7/100,000 of children < 15 years
- Onset: mostly 4 10 years
- Normal neurological state and development
- Genetics: Polygenic transmission/ some AD
- Induction: Hyperventilation-induced
- Brief (4–20 seconds, exceptionally longer) and frequent (tens per day) absence seizures with abrupt and severe impairment (loss) of consciousness.
- Automatisms are frequent but have no significance in the diagnosis.

Absence Epilepsy

Childhood Absence Epilepsy

EEG

- ictal discharges: generalized high-amplitude 3- Hz-spike and slow wave complexes.
- Spike-wave is rhythmic at around 3 Hz with a gradual and regular slowdown from the initial to the terminal phase of the discharge.
- The duration of the discharges varies from 4 to 20 seconds.

Treatment & Outcome

- · Drugs of choice
 - ethosuximide, valproate, lamotrigine
 - clonazepam, nitrazepam, acetazolamide
- Usually respond to treatment
- Transform to other type of seizure
- Recurrent: not common
- · Prognosis: favorable

A 15 y/o girl with GTC upon awakening

(after late party and alcohol consumption) (clumsiness)

Juvenile Absence Epilepsy

- Onset: late childhood, 9 13 years
- Seizure:
 - absence seizures
 - Nearly all patients may have GTCS.
 - More than half have myoclonic jerks but these are mild and do not show the circadian distribution of JME.
 - Consistent visual, photosensitive and other sensory precipitation of clinical absences is probably against the diagnosis of JAE.
 - However, on EEG, intermittent photic stimulation often facilitates generalized discharges and absences.

	1° GTC	2° GTC
GTCs with other clinically evident sz	90%	90%
Typical absence	60%	None
Myoclonic	40%	none
Focal seizure	none	90%
GTCs without other clinically evident sz	10%	10%
Precipitating factors	> 60%	< 10%
Consistently on awakening	common	uncommon
Family history of similar epilepsy	common	uncommon
EEG in untreated patients		
Generalized discharges	80	Exceptional
Focal abnormalities alone	10	60
Generalized + focal abnormalities	10	30

Juvenile Myoclonic Epilepsy (Janz Syndrome)

Comparison Between Absence & JME

	Childhood	Juvenile	JME
Age of onset	2 -12 yrs	puberty	puberty
Frequency	multiple/D	rarely/D	variable
EEG	3 Hz.S+W	3.5-4 Hz S+W	3.5-6 Hz.S+W
GTC	40-60%	80%	80 - 85 %
AED	ETH, VPA	VPA	VPA
Prognosis	favorable	favorable	favorable

Juvenile Myoclonic Epilepsy

- Sudden, mild to moderate myoclonic jerks(shoulder & arm) during awake, GTC
- Precipitating: sleep deprivation, alcohol intake, fatigue
- Chromosome 6, AD
- Onset 12 18 years (mean 14.6 years)
- Normal examination

	JME	JAE	
Main type of seizures	Myoclonic jerks	Typical absences	
Circadian distribution	Mainly on awakening	Any time during the day	
Typical absences	Mild and often imperceptible; 1/3 of patients	Defining seizure type; very severe, all patients	
Myoclonic jerks	Defining seizure type; all patients, mainly on awakening	Mild; 1/3 of patients, random	
GTCS	mainly occur after a series of myoclonic jerks on awakening	mainly occur independently or less commonly after a series of absence seizures	
EEG Brief (1–3 s) 3–6 Hz GSWD, usually asymptomatic		Lengthy (8–30 s) 3–4 Hz GSWD, usually associated with impairment of consciousness.	

Clinical Course & Treatment

- · Life-long treatment & respond to AED
 - Valproate (usually low dose)
 - Lamotrigine
 - Benzodiazepines
- Awareness of teratogenic effect of VPA in pregnancy
- · Excellent prognosis

Idiopathic Generalized Epilepsy with GTC Seizures Only

- Age at onset: 6 to 47 yrs (peak at 16–17 yrs)
- Men (55%) predominate slightly
- GTCS occur exclusively shortly after awakening regardless of the time of day or in a second seizure peak in the evening period of relaxation.
- With age, GTCS tend to increase in frequency and become more unpredictable
- Precipitating: sleep deprivation, alcohol, fatigue, shift work

Diagnostic Tips for JME

- GTCS, usually preceded by myoclonic jerks, are nearly pathognomonic of JME if they occur in the morning after:
 - a party to celebrate a birthday, end of school term or New Year's eve
 - waking up early in the morning to travel on a vacation, particularly after a late night
 - replacement of valproate with carbamazepine in women wishing to start a family
 - withdrawal of appropriate medication after many seizurefree years.

Idiopathic Generalized Epilepsy with GTC Seizures Only

- Genetic predisposition is relatively frequent.
- EEG: generalized epileptiform discharge, photosensitive
- Normal MRI brain
- · Lifelong disease
- Treatment: VPA, LTG, LEV

Idiopathic Generalized Epilepsy with GTC Seizures Only

- a newly proposed IGE syndrome of undetermined definition and boundaries.
- patients suffer from primarily GTCS occurring at any time in wakefulness, sleep or awakening.
- Thus, this syndrome is to include 'epilepsy with GTCS on awakening' which has been extensively studied by Janz

A boy with recurrent febrile seizures from aged of one year to 8 year

GEFS+

- marked genetic and phenotypic heterogeneity,
- extreme intra-familial and inter-familial clinical variations regarding seizure type, seizure frequency, severity and prognosis.
- SCN1A, SCN1B and SCN2A genes; GABRG2 gene
- Same spectrum with more severe syndromic phenotypes: Dravet syndrome, epilepsy with myoclonic-astatic seizures of Doose

GEFS+

- Generalized Epilepsy with Febrile Seizures plus
- Autosomal Dominant Epilepsy with Febrile Seizures plus
- GEFS+ has been described by Berkovic and his associates and has been recognized as a syndrome in development by the ILAE Task Force.

GEFS+

- · Brain MRI: normal
- EEG: depend on the clinical phenotype,
 - usually normal
 - generalized discharges, focal sharp waves
- Prognosis: usually benign and self-limited
 - non-febrile seizures occur in only 25%, infrequent, often remit by mid-childhood (median 11 years).
- Treatment: valproate, levetiracetam, topiramate

GEFS+

- Age at onset: first months of life to childhood
- Male = Female
- Heterogeneous clinical phenotypes
 - febrile seizures plus (FS+)
 - non-febrile generalized convulsions, absences, myoclonic, atonic, myoclonic-atonic seizures.
 - focal frontal and temporal lobe seizures may occur

Idiopathic Localization-related Epilepsy

- Benign childhood epilepsy with centrotemporal spikes (BCECTS)
- Benign childhood occipital epilepsy (BCOE)

Benign Epilepsy with Centrotemporal Spikes (BECTS)

or

Benign Rolandic Epilepsy

or

Benign Childhood Epilepsy with Centrotemporal Spikes

(BCECTs)

Characteristics

- 1. Onset between 2 and 14 years (3 10 years)
- 2. Simple focal motor seizure
- Characteristic EEG foci over rolandic (centrotemporal region) with normal posterior dominant rhythm

Benign Epilepsy with Centrotemporal Spikes

- Most common partial epilepsy
 - 10 20% of childhood epilepsy
 - 15.7 % of epilepsy before 15 years old
 - 24 % of epilepsy with onset 5 14 years
- Male predominance
- Frequent seizures: those with age of onset prior to 3 years

Clinical Presentations

- Unilateral facial sensorimotor symptoms (>30%)
 - Tingling face or hand
 - Tonic-clonic movements of face or hand
- Oropharyngeal manifestation (>50%)
- Speech arrest (40%)
- Excessive salivation (30%)
- Nocturnal
- Status epilepticus
- Presentation as 1st unprovoked seizure

Benign Epilepsy with Centrotemporal Spikes

- Unclear genetic basis
 - Genetic predisposition (40%)
 - Complex inheritance
 - AD trait, Chromosome 15q14, 16p
 - Mutation of potassium channel gene KCNQ2

Prognosis

- Excellent prognosis
- Spontaneous remission
- Some with neuropsychological disorders
- Evolution to or relationship with
 - Landau-Kleffner syndrome
 - Epilepsy with continuous spike-wave during slow-wave sleep

Treatment

- To treat or not to treat: not to be treated with long-term prophylactic AED
- Weigh between risk of seizure and risk of treatment
- Rx may be considered in
 - Repeated frequent seizures
 - Status epilepticus
 - Parents' request
- Single AED therapy with excellent response

Risk from Treatment

- Adverse effects from antiepileptic drugs
 - Hematopoietic system: aplastic anemia
 - Liver, pancreas, cardiac functions
 - Idiosyncratic drug reactions: SJS, TEN
 - Cognitive dysfunction
 - Mood and behavior problems
 - Others: weight gain or loss, tremor, etc....

Investigation

- EEG: Wakeful, drowsy & sleep recording
- Brain imaging
 - Not necessary in typical presentation & EEG findings
 - Non-specific finding may be found in 15% without any affect to decision-making for long-term treatment
- Other blood tests
 - Not necessary

Prognosis

- Spontaneous remission by age of 16 years
- Seizure recurrence
 - 2 4 yrs after onset
 - 10 -20% few seizures
- Some children with minor neuropsychiatric or neurodevelopment disability
 - Cognitive dysfunction
 - Learning disability
- Some overlap with Landau-Kleffner syndrome & ESES

Practical points

- EEG during awake and asleep in each epilepstic syndrome may have different characteristics
 - BECT: maybe only abnormal during sleep
- Both awake and asleep EEG, as well as certain activation methods should be done in individual patients with different syndrome
 - Absence: hyperventilation
 - JME: sleep deprivation, awaken during EEG

Seizure & Cognitive Outcomes in Thai Children with Benign Rolandic Epilepsy

Cross-section study from 2002 - 2009

- 46 Children with BRE as the first diagnosis at Ramathibodi Hospital
 - •23 boys & 23 girls
 - •Age range 5 14.5 yrs.
 - •Mean FU duration 19.5 mo.
 - •31 pts (67.4%): taking AED
 - •15 pts (32.6%): no AED without seizure recurrence

Visudtibhan A, Sakpichaisakul K, Khongkhatithum C, Thampratankul L, Chlemchanya S, Visudhiphan P. Poster Presentation, The 8th AOEC, Melbourne, Australia 2010

Practical point

- Physicians who order the EEG should give adequate information regarding the clinical information and other information to increase yield of diagnosis
 - Absence: adequate hyperventilation
 - BRE: include sleep portion
 - BEOP: include eye open, eye closing
 - JME: include EEG after awakening

THANK YOU FOR YOUR ATTENTION