



รองศาสตราจารย์นายแพทย์บรรพด สิทธินามสุวรรณ สาขาวิชาประสาทศัลยศาสตร์ ภาควิชาศัลยศาสตร์ คณะแพทยศาสตร์ศีริราชพยาบาล มหาวิทยาลัยมหิดล

Overview

- Cerebrovascular diseases (CVD) and epilepsy
- Cerebral cavernous malformation (CCM)
- Sturge-Weber syndrome (SWS)
- Arteriovenous malformation (AVM)
- Post-stroke epilepsy

Pathophysiology

Cerebral cavernous malformation (CCM)

- AKA "cavernoma" or "cavernous angioma"
- Vascular malformation
- Multilobulated appearance
- Endothelium-lined caverns without mature vessel walls
- Dynamic nature: progressive growth, repeated hemorrhages
- Most CCMs (48%) are asymptomatic

CCM-related epilepsy: risk factors

Location

- Supratentorial: seizures in 50-63% of patients
- Infratentorial: seizure in 0-18% of patients

Cortical involvement

- Cortical lesion: 57-70% associated with epilepsy
- Deeper lesion: 14-20% associated with epilepsy

Mesial temporal

- Mesial temporal: seizures in 8/9 (88.9%)
- Neocortical temporal: seizures in 41/72 (56.9%)

CCM-related epilepsy: definition

Definite CCM-related epilepsy

 At least 1 CCM + evidence of SOZ in area of in the immediate vicinity of the CCM

Probable CCM-related epilepsy

 At least 1 CCM + evidence that the epilepsy is focal and arises from the same hemisphere as CCM but not necessarily in its immediate vicinity + no evidence of other causes for epilepsy

CCM unrelated to epilepsy

 At least 1 CCM + evidence that CCM and epilepsy are not causally related

CCM-related epilepsy: risk factors

Controversial risk factors

- Lobar localization
- Number of CCM
- Size of CCM and hemosiderin rim

Presurgical evaluation for CCM

- 5-year risk of seizure is low in CCM patients without seizures
 - Incidental CCM 4%
 - CCM presenting with ICH 6%
 - Prophylactic AED is not recommended for CCM patients without seizures

Presurgical evaluation for CCM

CCM with single seizure

Most doctors prefer AED > surgery

Early surgery

- High risk of bleeding
- Patients with poor drug compliance
- Patients with strong desire to eventually stop AED

Presurgical evaluation for CCM

CCM presenting with seizures

- 5-year risk of seizure is high 94%
- AED is recommended

Recommendations

- All CCM patients presenting with seizures should be transferred to epileptologists
- Semiology and EEG
- Classification: definite/probable/unrelated

Presurgical evaluation for CCM

CCM patients with seizure free on AED

- 47-60% of patients with newly diagnosed CCM
- Regular follow-up is recommended

Presurgical evaluation for CCM

CCM patients with persistent seizures

- Should <u>NOT</u> wait until fulfill the criteria of drug resistant epilepsy (DRE)
- Presurgical evaluation for epilepsy surgery is considered in cases with failure of single AED trial
- In CCM patients with rare seizures who have semiology, inter-ictal EEG concordant with location of CCM, patients may be referred to surgery (no need of ictal EEG)

Presurgical evaluation for CCM

Dual pathology (CCM + HS or other lesions)

- Most patients will not achieve seizure-free by removal of a single lesion
- Identify that which one is epileptogenic lesion
- In patients with mesial temporal CCM + ipsilateral HS, lesionectomy + amygdalohippocampectomy is recommended

Intraoperative electrocorticography (ECoG)

Controversial in improving surgical outcome

Presurgical evaluation for CCM

CCM patients with multiple CCMs and persistent seizures

- Video-EEG is necessary
- Identify that which one of CCM corresponding to occurrence of seizure (epileptogenic CCM)
- Seizure outcome in patient with multiple CCMs and single epileptogenic CCM, is favorable

Surgery for CCM

Indications

- Epilepsy
- Bleeding
- Progressive growth with pressure effect

Surgery for CCM

Microsurgical resection

 Lesionectomy with removal of surrounding epileptogenic brain tissue (hemosiderin-stained brain tissue)

Neuronavigation-guided

- Intraoperative mapping for CCM located in or near the eloquent cortex
 - Awake surgery with electrocortical stimulation

Sturge-Weber syndrome

Pathophysiology of epilepsy in SWS

- Increased number of leptomeningeal vessels
- Atrophy and calcification of cerebral cortex, particularly around blood vessels
- Decreased number of cortical vessels
- Gliosis, neuronal loss and tissue loss
- Calcification, neuronal loss and gliosis are secondary to brain injury from venous stasis and impaired brain perfusion

Sturge-Weber syndrome

Vascular malformation

- 1. Skin: port-wine stain (capillary malformation)
- 2. Brain: leptomeningeal angioma
- 3. Eye: choroidal angioma

Leptomeningeal angioma

- Epilepsy: 75% within 1 year of age, 90% within 2 years of age
- Neurological impairment: intellectual disability, hemiparesis, visual impairment, severe migraine

Sturge-Weber syndrome

Epilepsy in SWS can be difficult to control

- Frequent clusters of seizure
- Episodes of status epilepticus

Seizure control results in the best chance of optimal cognitive and neurologic development

DRE in SWS

 Surgery should be considered especially when hemiparesis and visual deficits already occur

Sturge-Weber syndrome

Hemispherectomy is very successful (90%) in eliminating seizures in most cases and focal resection is less effective

Bilateral extensive SWS with severe brain involvement

- The highest risk of very poor neurologic and cognitive outcome
- Not good surgical candidates
- Hemispherectomy is recommended only in bilaterally SWS with very severe disabling seizures primarily coming from 1 hemisphere
- Surgery is considered palliative > curative

Brain AVM and epilepsy

Nowadays, endovascular treatment > surgery

Surgery for AVM with DRE

- Presurgical evaluation for identifying epileptic focus
- Resection of brain AVM and epileptogenic brain, gliotic brain and hemisiderin deposition
- Electrocortical stimulation and mapping in AVM close to the eloquent cortex

Brain AVM and epilepsy

DRE is rare in brain AVM

Pathogenesis of epilepsy in brain AVM

- Focal cerebral ischemia secondary to AV shunting
- Gliosis of surrounding brain
- Hemosiderin deposit
- Focal hemorrhage
- Secondary epileptogenesis in temporal lobe

Post-stroke epilepsy

Pathogenesis of epilepsy after ischemic stroke

- Increased intracellular Ca2+ and Na+ resulting in lower threshold for depolarization
- Glutamate excitotoxicity
- Hypoxia,
- Metabolic dysfunction
- Global hypoperfusion
- Hyperperfusion injury
- Gliosis

Post-stroke epilepsy

Pathogenesis of epilepsy after hemorrhagic stroke

- Irritation caused by products of blood metabolism
- Hemosiderin deposition
- Gliosis

Post-stroke epilepsy: risk factors

After hemorrhagic stroke

- Subarachnoid hemorrhage
- Middle cerebral artery aneurysm
- Intraparenchymal hemorrhage
- Presence of structural brain lesion
- EEG abnormalities
- Partial type seizure

Post-stroke epilepsy: risk factors

After ischemic stroke

- Severe initial neurological deficit
- Severe persistent disability
- Multiple infarctions
- Large infarction
- Cortical involvement
- Hippocampal involvement
- Embolic stroke

Post-stroke epilepsy

DRE is rare in post-stroke epilepsy

Surgical management

- Presurgical evaluation for epilepsy surgery
- Surgical options: focal resection to hemispherotomy
- Patients' age, underlying diseases and use of anticoagulant/antiplatelet are major limitations for surgery

Conclusions

Cerebral cavernous malformation

- Most common vascular lesion related to epilepsy
- No seizure, no AED
- Surgery in cases with epilepsy and failure of AED, poor drug compliance, desire to stop AED, high risk of bleeding
- Lesionectomy with removal of hemosiderin

Sturge-Weber syndrome

- Surgery is considered in cases with DRE + neurological deficit (motor and visual)
- Hemispherectomy renders the best result

Conclusions

Brain AVM and post-stroke epilepsy

- Rare DRE
- Surgery is considered in cases with DRE
- Surgery for brain AVM: resection of AVM, gliotic brain and hemosiderin
- Surgery for post-stroke epilepsy depends on extension of epileptic focus: focal resection, lobectomy, hemispherotomy