

Outline

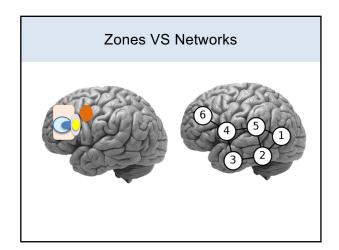
- Definition
- Zones VS networks
- Early network
- · Methods used to study epileptic networks
- Human connectomes projects
- Application of network knowledges in clinical setting

SPECIAL REPORT

Revised terminology and concepts for organization of seizures

and epilepsies: Report of the ILAE Commission on

Classification and Terminology, 2005–2009 *†Anne T. Berg, ‡Samuel F. Berkovic, §Martin J. Brodie, ¶Jeffrey Buchhalter, #**]. Helen Cross, ††Walter van Emde Boas, ‡]Jerome Engel, §]acqueline French, ¶¶Tracy A. Glauser, ##Gary W. Mathern, ***Solomon L. Moshe, †Douglas Nordli, ††Perrine Plouin, and ‡Ingrid E. Scheffer


Epilepsia 2010;51:676-85

Definition

- Epileptogenic Network
- The brain regions involved in the production and propagation of epileptic activities

Changes in concepts and terminology

- Focal seizure
- originating within networks limited to one hemisphere. They may be discretely localized or more widely distributed. Focal seizures may originate in subcortical structures
- Generalized seizure
- originating at some point within, and rapidly engaging, bilaterally distributed networks

Brain (2001), 124, 1683-1700

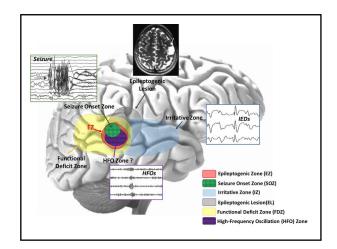
Correspondence to: Hans O. Lüders, MD, Departmen of Neurology S90, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA E-mail: scolarc@ccf.org

INVITED REVIEW

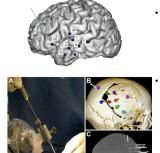
Presurgical evaluation of epilepsy

Felix Rosenow¹ and Hans Lüders²

¹Department of Neurology, Philipps University, Marburg Germany and ²Department of Neurology, The Cleveland Clinic Foundation, Cleveland, Ohio, USA


Epilepsia, 43(3):219-227, 2002 Blackwell Publishing, Inc. © International League Against Epilepsy

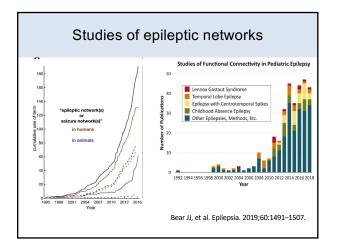
Clinical Research

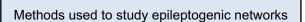

Neural Networks in Human Epilepsy: Evidence of and Implications for Treatment

Susan S. Spencer

Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A.

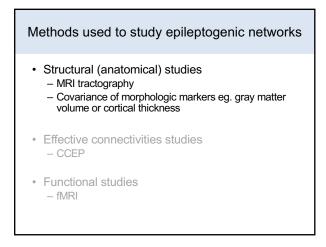
Zones	Definition	What tells what?
Irritative zone	Area that creates interictal epileptiform discharges	Interictal EEG, MEG, EEGfMRI
Ictal onset zone	Origin of EEG seizures	EEG or invasive EEG recording during onset of seizure
Symptomatogenic zone	Area that creates symptoms during seizures	Ictal semiology on video
Epileptogenic lesion	Lesion that create seizures	Neuroimaging
Functional deficit zone	Area that responsible for neurological deficits	Deficit during interictal period
Epileptogenic zone		"Seizure free after resection"

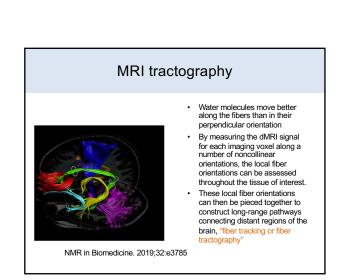

- The concept of epileptogenic networks is historically linked to the development of the stereoelectroencephalography (SEEG) method
- SEEG method was developed in the 1960s by Talairach and Bancaud and consists of stereotactic implantation of multiple intracerebral electrodes targeting different brain areas


Roland JL, et al. J Neurosurg Pediatr 23:411-421, 2019

- The view arose because the SEEG, for the first time, allowed simultaneous recording from multiple cortical and subcortical structures, which were seen to be concurrently involved in seizure organization, and whose anatomic relation could be precisely defined
- Early observation from Bancaud and Talairach's SEEG studies
 - The electrical disturbances arising from the presence of an epileptogenic cerebral lesion did not respect anatomic boundaries
 - Seizures could be observed to arise from structures quite distant from the lesion and even separate from the region of maximal interictal spiking

Original concept of the EZ


• the idea of a set of interrelated brain regions involved in the primary organization of the ictal discharge, rather than a focus The scheme proposes a hierarchical organization in terms of epileptogenicity in the epileptic brain

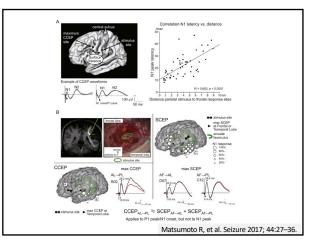


- Structural (anatomical) studies
 - MRI tractography
 - Covariance of morphologic markers eg. gray matter volume or cortical thickness
- Effective connectivities studies
 CCEP
- Functional studies

 fMRI

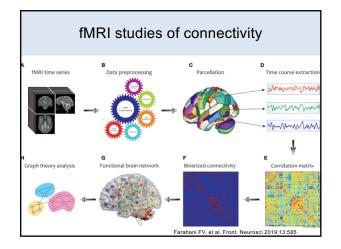
Methods used to study epileptogenic networks

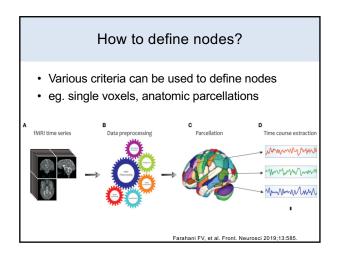
- Structural (anatomical) studies
- MRI tractography
- Covariance of morphologic markers eg. gray matter volume or cortical thickness
- Effective connectivities studies
 CCEP
- Functional studies

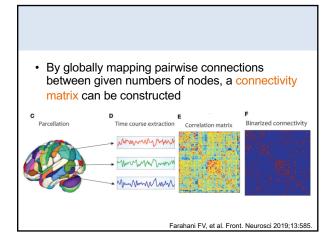

 fMRI

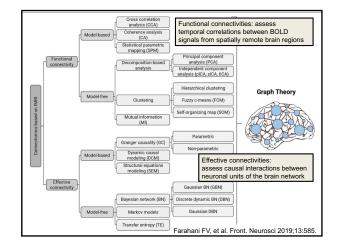
Effective connectivity

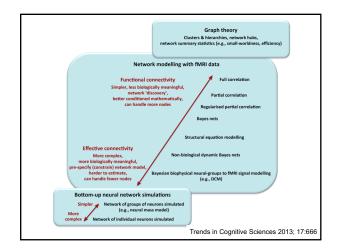
- Analyze the causal influence between brain regions
- Non-interventional approaches:
- Observational and therorize causality indirectly by analyzing simultaneous recordings of neural activities to quantify the directionality of functional connections using mathematical measures eg. Granger causality and dynamic causal modeling

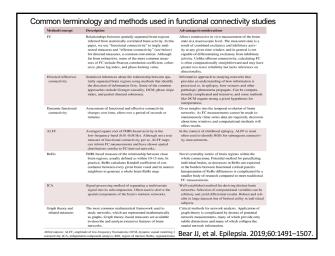

Effective connectivity

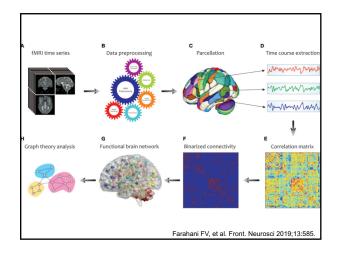

- Interventional approaches:
- Use stimulation (cortical stimulation transcranial magnetic stimulation)
- to influence changes recorded by evoked responses recorded on EEG or electrocorticogram (ECoG)) or recorded indirectly by fMRI in order to assess its effects on other brain regions

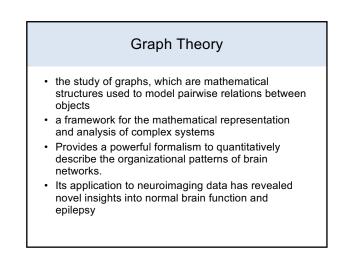


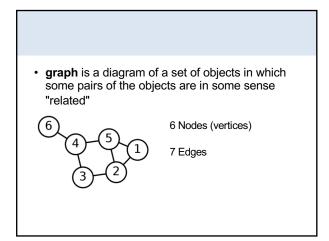

Direct cortical responses Functional cortical characterization	Goldring et al. [8]	
Language system		
Dorsal language network	Matsumoto et al. [12], Conner et al. [33], Keller et al. [23], Enatsu et al. [65] David et al. [15], Yamao et al. [25] ^a , Saito et al. [26] ^a , Tamura et al. [27] ^a	
Ventral language network	Matsumoto et al. [12], Umeoka et al. [1], Koubeissi et al. [2], Araki et al. [22]	
Cognitive motor system		
preSMA/SMA-lateral PM/MI Negative motor network	Matsumoto et al. [19], Kikuchi et al. [49] ⁴ , Swann et al. [3] Enatsu et al. [71]	
Interhemispheric connections	Terada et al. [20,21]	
Fontal lobe network		
IFG connectivity Fronto-parietal connectivity	Greenlee et al. [67,68], Garell et al. [34] Matsumoto et al. [29]	
Fronto-temporal connectivity	Lacruz et al. [60]	
Limbic network		
Limbic pathways Interhemispheric connections	Wilson et al. [9], Catenoix et al. [66], Kubota et al. [19], Koubeissi et al. [43], Lacuey et al. [42], Enatsu et al. [5] Wilson et al. [10], Umeoka et al. [1], limenez-limenez et al. [6]	
Insular connectivity	Wilson et al. [10], Umeoka et al. [1], Jimenez-Jimenez et al. [6] Almashaikhi et al. [8]	
Auditory system		
A1-pSTG connectivity	Howard et al. [13], Brugge et al. [64], Oya et al. [70]	
Visual system	Maximum Marcal 1991	
V1-higher visual cortices	Matsuzaki et al. [69]	
Thalamo-cortical network Pulyinat-cortices	Rosenberg et al. [16]	
	now morth of an [10]	
Connectivity maps BA parcellation map	Entz et al. [44]	
Comparison with ECoG broadgamma envelope		
Comparison with resting state fMRI	Keller et al. [23]	
Comparison with diffusion tractography	Donos et al. [45]	
SMA – supplementary motor area; PM – premotor ar BA – Brodmann's area. ^a Intraoperative studies.	ea: MI - primary motor area; IFG - inferior frontal gyrus; A1 - primary auditory cortex; VI - primary visual cortex;	
	Matsumoto R, et al. Seizure 2017; 44:27–36.	

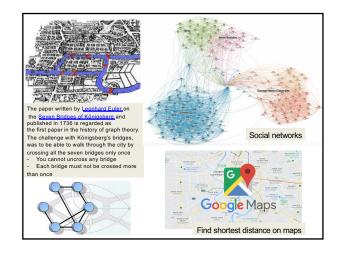

Methods used to study epileptogenic networks Structural (anatomical) studies MRI tractography Covariance of morphologic markers eg. gray matter volume or cortical thickness Effective connectivities studies CCEP Functional studies fMRI

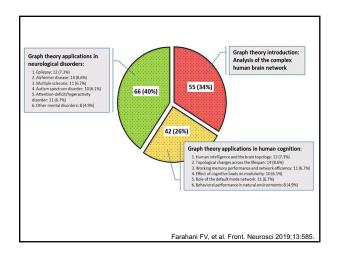


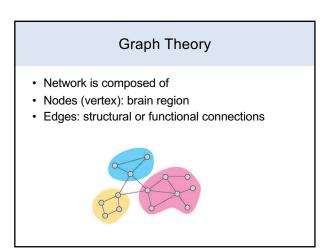


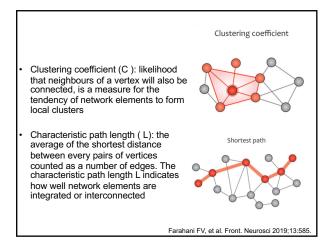


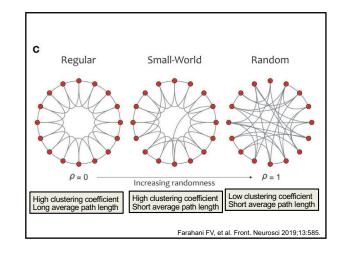


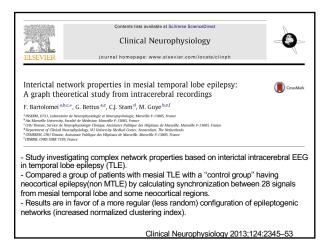


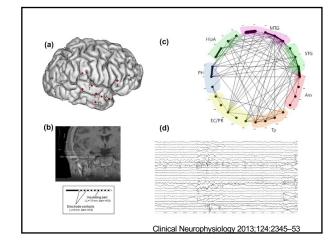


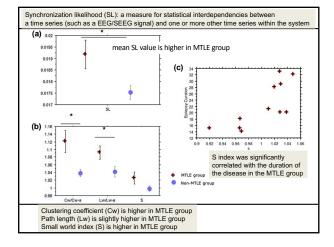


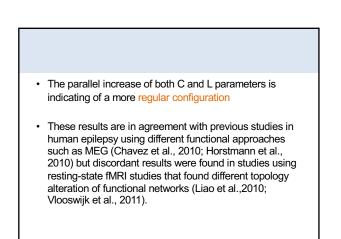


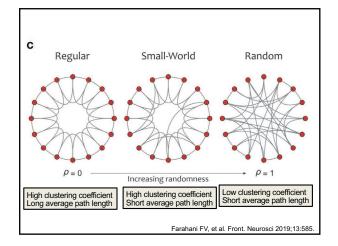


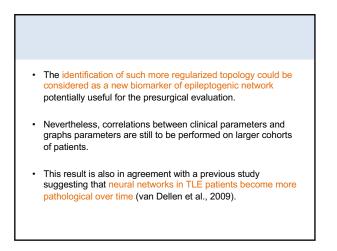


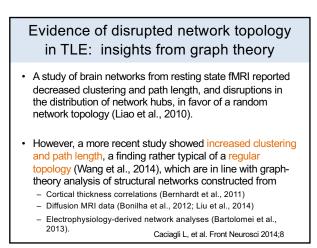












Evidence of disrupted network topology in TLE: insights from graph theory

 The application of graph theory, along with clinicoradiological findings, helps to better understand the network mechanisms behind a cognitive decline in focal epilepsies, particularly TLE, and offers promising diagnostic biomarkers

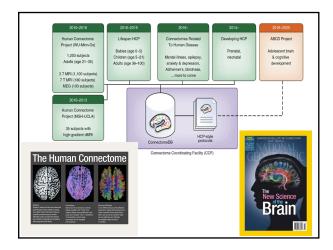
Chiang and Haneef 2014; Onias et al. 2014; Wang et al.2014; Pedersen et al 2015; Ridley et al. 2015; Iyer et al. 2018

Evidence of disrupted network topology in TLE: insights from graph theory

- Evidence from some of the studies suggests that alterations in brain structural (Bernhardt et al., 2011) and functional (Wang et al., 2014) networks intensify over time.
- Certain studies have shown that patients with a poor outcome after surgery exhibit more pronounced network disruptions compared to those who achieved seizure freedom.
- These findings suggest that whole-brain network analysis might be a valuable asset for clinical decisionmaking (Bernhardt et al., 2011).

Caciagli L, et al. Front Neurosci 2014;8

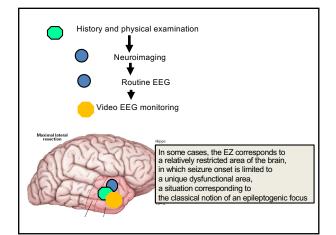
Epilepsy network is dynamic

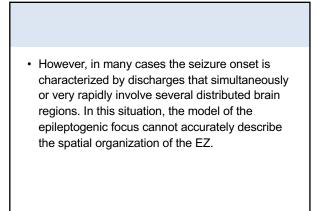

- · Wide spread zone
- · May have
 - inter-seizure variation
 - multiple networks
 - inter-individual variation
- · May progress overtime

Studies on epileptic networks: Caveats

- Although the contribution of aberrant connectivity to seizure control is increasingly recognized, individualized predictive values on a single-patient level remain to be established, because most studies so far have focused on group analyses
- Understanding the complexities between the epileptogenic zone/lesion and whole-brain connectivity is of special importance for clinical decision making in epilepsy surgery and should be the object of future indepth, possibly prospective, analyses.

Human Connectome Projects


- Began in 2010
- National Institutes of Health (NIH) awarded ~\$40 million to two consortia to develop improved neuroimaging methods and to acquire a data set of unprecedented size and quality for mapping the "normal human macroscale connectome" (the longdistance connections between all of the brain's areas)
- Deepen our understanding of healthy brain function and may improve our ability to understand and treat neurological and psychiatric disorders



Application of network knowledges in clinical setting

- Potentially informed seizure focus localization (in complement with other methods)
- Potential predictors of seizure outcome
- · Potential predictors of cognitive outcome

Foit NA, Bernasconi A, Bernasconi N. Neurosurg Clin N Am 2020;31:395-405

Summary

- Definition
- · Zones VS networks
- Early network
- · Methods used to study epileptic networks
- Human connectomes projects
- Application of network knowledges in clinical setting

Summary

 Since the early works of Bancaud and Talairach using SEEG, multiple approaches have been developed to study the spatiotemporal oscillatory dynamics of brain networks engaged in epileptogenic processes

Summary

- Efforts to quantify the complex phenomena that rule the spatiotemporal organization of the EZ are feasible, but how these concepts may be useful in clinical practice remains uncertain and underapplied
- · Potential uses of these concepts could be to
 - improve surgery procedures via tailored and minimally invasive curative surgery based on specific disconnection or multiple nodal targeting
 - informed seizure focus localization (in complement with other methods)
 - predictors of seizure outcome
 - predictors of cognitive outcome