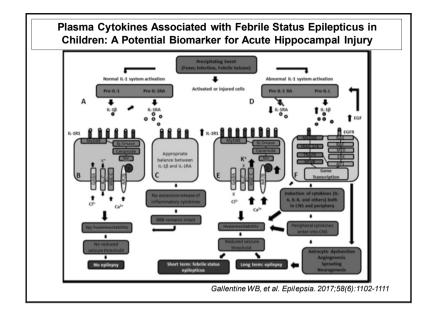


Faculty of Medicine Ramathibodi Hospital

Epilepsy & CNS Inflammation


- Inflammation <==> Seizure & Epilepsy
- · CNS infection; viral encephalitis
- Epilepsy with CNS inflammation/Autoimmune encephalitis
- 。 Rasmussen encephalitis
- 。 Anti-NMDA encephalitis (children)
- Limbic encephalitis (Anti-VGKC)
- Anti-GAD encephalopathy
- Febrile-Infection Related Epilepsy Syndrome (FIRES)

- Inflammation in focal epilepsy documented in surgical samples (FCD, TSC, HS) from patients with refractory epilepsy
- Microglial activation and increased IL-1ß (proconvulsant)
- Toll-like receptor 2/4, Receptors for advanced glycation end products (RAGE), High-mobility group box (HMGB)
- Inflammation activation after prolonged seizures in the immature brain (IL-1β, IL-6, IL-8, TNFα, IL1-RA*)

*IL1-RA= Interleukin-1 receptor antagonist

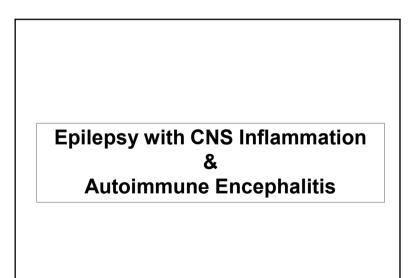
Dupuis N. CNS Neuroscience & Therapeutics 2015; 21: 141–151 Gallentine WB et al. (FEBSTAT) Epilepsia. 2017;58(6):1102-1111

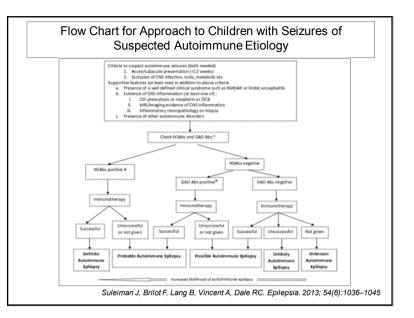
	Epilepsia, 54(6):1036–1045, 2013 doi: 10.1111/epi.12142
	FULL-LENGTH ORIGINAL RESEARCH
Autoimn	nune epilepsy in children: Case series and proposed guidelines for identification
*Jehan Sule	man, *Fabienne Brilot, †Bethan Lang, †Angela Vincent, and *Russell C. Dale
	Suleiman J, Brilot F, Lang B, Vincent A, Dale RC. Epilepsia. 2013; 54(6):1036–1045

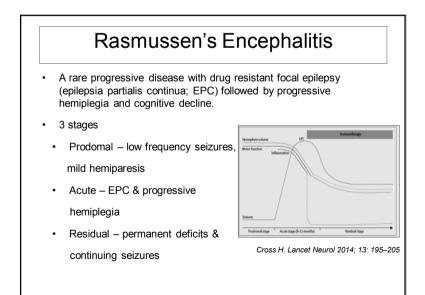
Spectrum of Antibody-associated Epileptic Encephalitis

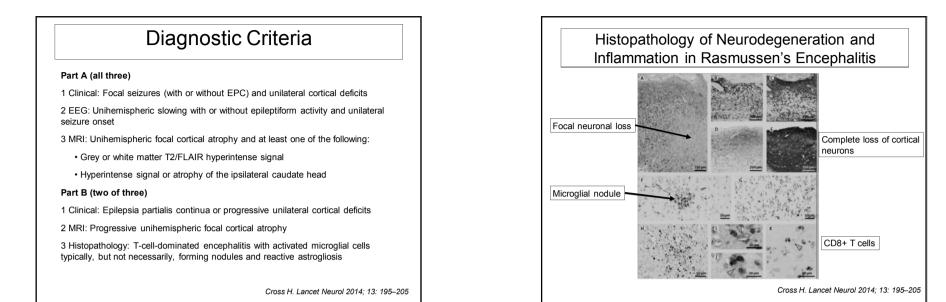
Antibody-target	Epitopes	Clinics	Neuropathology
Intracellular	GAD65, AMP	VAR. (NPE)	CD8-positive T-cells and neuronal cell loss preferentially in hippocampus
Intranuclear	Hu, Yo, Ma2	PE	CD8-positive T-cells attacking neurons
Voltage-gated potassium channel complex (VGKC)	LGI1 Caspr2	NPE (PE)	CD8-positive T-cells attacking neurons, severe cell loss preferentially in hippocampus
Glutamate receptors	NMDA R1	NPE (PE)	Few T-cells, only mild neuronal cell loss
Most of these antibody-associated encephalitides car	n occur with or v	vithout an unde	erlying neoplasm
, ,	ysin, VAR varia	ble, NPE non-	paraneoplastic encephalitis, PE paraneoplastic encephalitis
GAD glutamic acid decarboxylase, AMP amphiph	ysin, VAR varia	ble, NPE non-	paraneoplastic encephalitis, PE paraneoplastic encephalitis
GAD glutamic acid decarboxylase, AMP amphiph	ysin, VAR varia	ble, NPE non- otein-like 2, NI	paraneoplastic encephalitis, PE paraneoplastic encephalitis
GAD glutamic acid decarboxylase, AMP amphiph	ysin, VAR varia	ble, NPE non-	paraneoplastic encephalitis, PE paraneoplastic enc

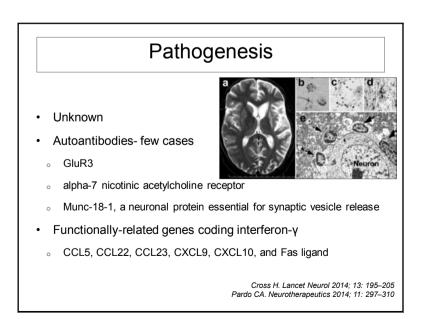
Criteria and Supportive Features to Suspect Autoimmune Epilepsy in Children with Seizures
The following two clinical criteria are used to suspect autoimmune epilepsy associated with NSAbs and GAD antibodies (both are needed)
1. Acute or subacute (<12 weeks) onset of symptoms.
 Exclusion of other causes (CNS infection, trauma, toxic, tumor, metabolic, previous CNS disease).
The following supportive features would strengthen the suspicion of autoimmune epilepsy (patients should have at least 1 of the following):
1. The presence of a well-defined clinical syndrome such as NMDAR
or limbic encephalitis
Suleiman J, Brilot F, Lang B, Vincent A, Dale RC. Epilepsia. 2013; 54(6):1036–104


Criteria and Supportive Features to Suspect Autoimmune Epilepsy in Children with Seizures


- The following supportive features would strengthen the suspicion of autoimmune epilepsy (patients should have at least 1 of the following):
 - 2. CNS inflammation manifested by at least one of:
 - > a. CSF pleocytosis (defined as >5 white cells/mm³) or presence of oligoclonal bands, elevated IgG index, or elevated neopterin
 - b. MRI abnormality compatible with an inflammatory or autoimmune encephalitis including increased signal in the mesial temporal lobe
 - > c. Inflammatory neuropathology on biopsy


3. History of other antibody mediated condition (e.g., myasthenia gravis), organ specific autoimmunity or other autoimmune disorders


4. Response to immunotherapy

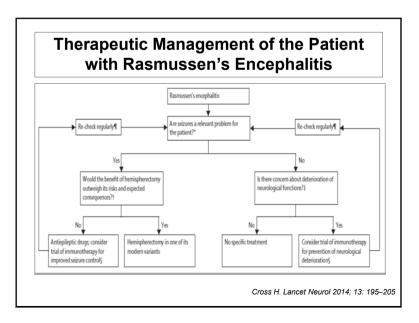

Suleiman J, Brilot F, Lang B, Vincent A, Dale RC. Epilepsia. 2013; 54(6):1036–1045

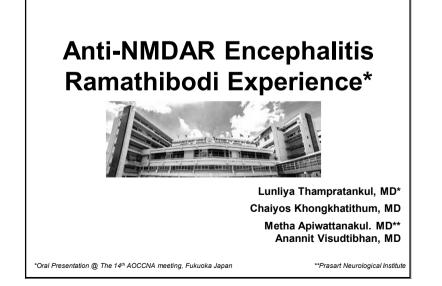
Management

- · Anti-seizure medication
 - Resistant to AEDs
 - Aim: Prevent bilateral convulsive seizures
 - o Botulinum toxin (facial myoclonia, painful spasms of arms)
 - 。 VNS, TMS
- Immunotherapy (case reports or small series)
 - Pulse steroids, IVIg, plasmapheresis, tacrolimus, azathioprine
 - Pulse steroids + tacrolimus = IVIg >> Control* (preserved functional & structural, not seizure control)

Cross H. Lancet Neurol 2014; 13: 195–205 Bien CG. Epilepsia 2013; 54: 543–50*

Management


- Immunotherapy (cont.)
- Natalizumab* : block T-cells entry into CNS, stop both seizures and functional decline (single case)
- Surgery** (only mean to cure for seizures)
 - Complete disconnection of affected hemisphere (functional hemispherectomy/hemispherotomy)
 - Timing (protect non-affected hemisphere)
 - Short seizure duration associated with better outcome
 - Severe intractable epilepsy
 - Presence of functional decline
 - o Contralateral epileptiform discharges (α poor outcome)

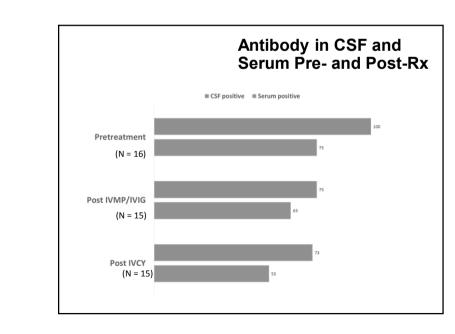

Bittner F. Neurology 2013; 81: 395–97* Cross H. Lancet Neurol 2014; 13: 195–205**

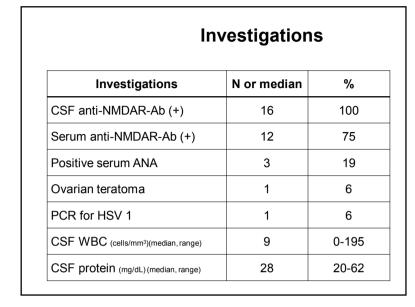
- Surgery; consequences
- Hemiparesis, hemianopia
- Language transfer (age <5-6 years)
- Preserved receptive function
- > 2-3 words expression
- > Rare for complete aphasic
- > fMRI for presurgical decision making

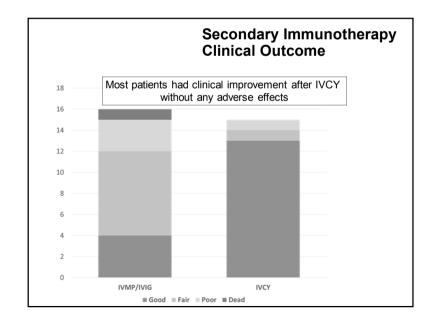
Cross H. Lancet Neurol 2014; 13: 195-205

Anti-NMDA Receptor Encephalitis

- "Dyskinetic encephalitis lethargica"
- Firstly described in 2007 by Josep Dalmau
- The most common and well-known auto-antibody mediated CNS disorder
- Neuropsychiatric symptoms, behavioral changes, sleep disturbance, mutism, abnormal movements, seizures, dysautonomia and severe encephalopathy
- 4 phases: prodromal, psychotic and/or seizure, unresponsive and hyperkinetic


	N	%, (range)
No. of patients	16	
Female	13	81%
Age (months)	113	(30 -181)
Duration of symptoms (days)	14	(1-180)
Missed Dx as psychiatric dis	4	25 %

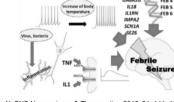

Clinical features	N	%
Altered mental status	13	81
Abnormal movement	11	69
Insomnia	11	69
Seizure	11	69
Status epilepticus	2	13
Fever	7	44
Hallucination	7	44
Labile/depressed mood	5	31


Clinical Course

N or median	% (range)
6	38
2	13
2	13
7	44
28.5	(7-105)
	median 6 2 2 7

	Primary Immuno Clinical Outcome		ару
18	Immunotherapy	N	%
	IVMP only	7	44
	IVMP + IVIG	9	56
8	One girl with m ovarian teraton	na die	ed
6	from respiratory failure and severe autonomic		
4	dysfunction aft	er tur	nor
2	removal.		
0 IVMP/IVIG Good Fair Poor Dead	IVMP: IV methylprednisolone IVIG: Intravenous immunoglot		

Outcome at Final Evaluation


Outcome	Ν	%
Follow up duration (mo)	34	(10-73)
Responder	14	87
Non-responder	1	6
Relapse	4	27
Favorable outcome		
mRS =0	6	37
mRS =1	7	44
mRS =2	1	6
Mortality	2	13

Acute Encephalopathy with Inflammation-Mediated Status Epilepticus

- Hemiconvulsion-hemiplegia syndrome (HHS)
- · Febrile-Infection Related Epilepsy Syndrome or Fever-induced refractory epileptic encephalopathy (FIRES) IMMATURE BRAIN
- Previously normal school-age child 0
- Severe seizures evolving into 0 status epilepticus and are

triggered by fever but without

an identifiable cause

FEB 1 FEB 2

FEB 4 FEB 5

FEB 6

CHRNAA

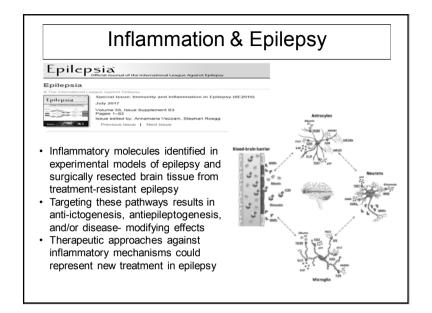
GABR2G

Dupuis N. CNS Neuroscience & Therapeutics. 2015; 21: 141-15:

Conclusion • Treatment of anti-NMDAR encephalitis with high dose methylprednisolone and/or IVIG

- followed by cyclophosphamide resulted in a favorable outcome.
- Relapse mostly occur in the first 6 months after complete treatment, but could occur late up to 3 years

Febrile-Infection Related Epilepsy Syndrome (FIRES)


- Prevalence <1:100,000, age of onset: 2–17 (median 8) yrs, previously healthy
- Preceded by different types of febrile infections often flu-like
- Explosive onset of multifocal or generalized seizures of different types directly evolving into super-refractory status epilepticus
- EEG: global slowing or multifocal discharges with bilateral • fronto-temporal predominance, or both
- CSF: normal or pleocytosis, normal protein concentration, no oligoclonal bands

Van Baalen A. Neuropediatrics. 2017 ;48(1):5-18

Febrile-Infection Related Epilepsy Syndrome (FIRES)

- Cranial MRI (during the acute phase):
- $_{\circ}$ $\,$ None or nonextensive bit emporal or diffuse abnormalities
- Sporadic involvement of the basal ganglia, diffuse cortical edema, and/or hydrocephalus
- Extensive etiologic investigations- NEGATIVE (rare coexisting TPO or GluR antibodies)
- · Very refractory to AEDs even anesthetics
- 。 Ketogenic diet, high dose phenobarbital/midazolam, canabidiol
- °??Pulse steroid, IVIg, plasma exchange, tacrolimus, rituximab, ECT
- Outcome:
- ° Chronic epilepsy without silent period
- Global brain atrophy after a few weeks with mild-to-severe neuropsychologic impairments

Van Baalen A. Neuropediatrics. 2017 ;48(1):5-18

Thank you for Your Attention & Questions