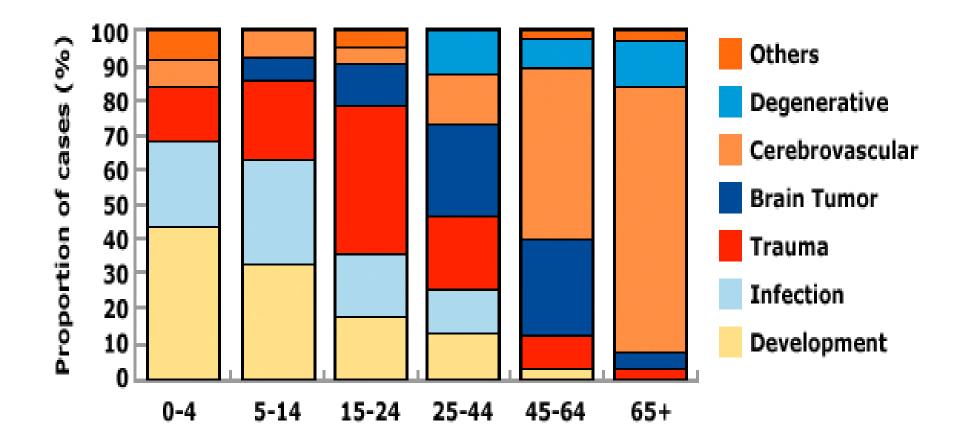


Epilepsy and Brain Tumor

Apasri Lusawat M.D. Pediatric Neurology Prasat Neurological Institute



Outline

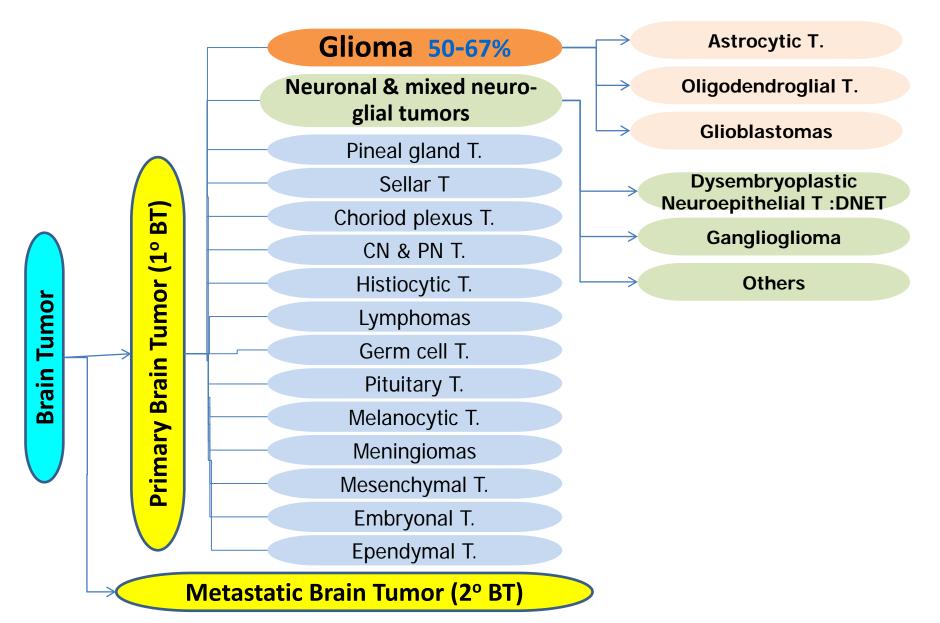
- Overview
- Pathogenesis : Tumor-> epilepsy

Etiology of Epilepsy, age

Annegers JF. The epidemiology of epilepsy. In: Wyllie E, ed. The treatment of epilepsy: principles and practice. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2001:165-72.

EPILEPSY AND BRAIN TUMORS

• CNS neoplasms are the cause of


(van Breeman MS, et al 2007)

 \approx 10–15% of adult-onset epilepsy

 \approx 0.2–6.0% of childhood-onset epilepsy

- Seizure is the most common presenting symptom of brain tumor (Lynam LM, et al 2007)
 - 38% of primary CNS tumors
 - 20% of secondary CNS tumors

Brain Tumor Classification

Brain Tumor Grade

- "low grade" (WHO grade I or II)
- "high grade" (WHO grade III or IV).

Grading of selected CNS tumors according to the 2016 CNS WHO

WHO grades of select CNS tumours		d ganglioglioma	
Diffuse astrocytoma, IDH-mutant Anaplastic astrocytoma, IDH-mutant Glioblastoma, IDH-wildtype Glioblastoma, IDH-mutant Diffuse midline glioma, H3 K27M-mutant Oligodendroglioma, IDH-mutant and 1p/19q-codeleted Anaplastic oligodendroglioma, IDH-mutant and 1p/19q-codeleted			IV IV
Other astrocytic tumours Pilocytic astrocytoma Subependymal giant cell astrocytoma Pleomorphic xanthoastrocytoma Anaplastic pleomorphic xanthoastrocytoma		eatures a l nerves iour (MPNST) II, II	IV IV I I I or IV
Neuronal and mixed neuronal-glial tumours Dysembryoplastic neuroepithelial tumour Gangliocytoma Ganglioglioma Anaplastic ganglioglioma Dysplastic gangliocytoma of cerebellum (Lhermitt	te-Duck	i III	 or

Seizure frequency based on Tumor type

Lancet Neurol 2007 421-430

Tumor type	Seizure frequency%	% of primary brain tumors
DNET	92-100	0.8-5
Ganglioglioma	80-90	0.3-3
Low-grade glioma	60-85	15
Meningioma	27-41	36.4
GBM	29-49	15.1
Metastatic Lesions	14-35	-
Primary CNS Lymphoma	10	2-4

Neuronal tumors have a higher incidence of seizures. Due to-> population of neurons could be epileptogenic within the tumor whereas in the glial tumors the seizure focus is generally in the peritumoral brain tissue

Seizures & Tumor Pathology

- Slow-growing, infiltrative tumors : DNET & LGG
 Highest risk Sz 75%-100% in adults and children.
- Meningiomas and high-grade astrocytomas,
 - Less common in children compared with adults
 - 30%-60% incidence of Sz in adults and children.
- Seizures in 20-40% of pts brain metastases,
 - in 67% with melanoma, in 48% with lung cancer,
 - In 33% with CA breast , in 55% with unknown CA

Maschio M., 2012

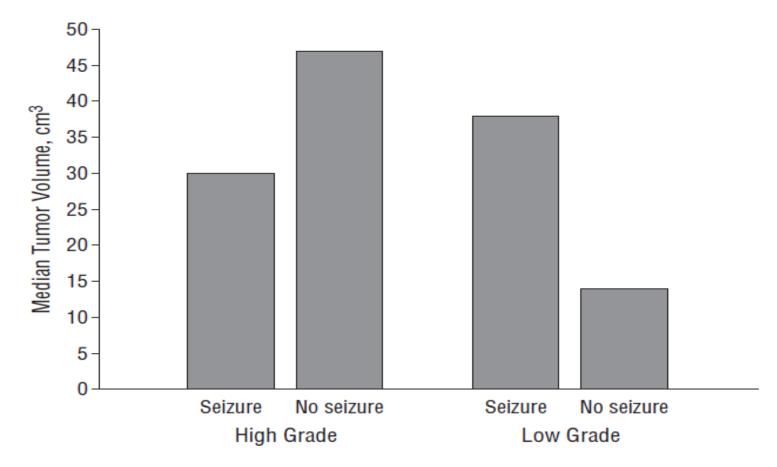

Developmental brain & Tumor

Table I. The three-tiered ILAE classification system of focal cortical dysplasia (FCD) distinguishes isolated forms (FCD Types I and II) from those associated with another principal lesion (FCD Type III).					
FCD Type I (isolated) Focal cortical dysplasia with abnormal radial cortical lamination (FCD Type Ia) Focal cortical dysplasia with abnormal tangential cortical lamination (FCD Type Ib) Focal cortical dysplasia with cortical dysplasia with abnormal radial and tangential cortical lamination (FCD Type Ic)				, and the second s	
FCD Type II (isolated)	(isolated) Focal cortical dysplasia with dysmorphic neurons (FCD Type IIa)		Focal cortical dysplasia with dysmorphic neurons and ballo cells (FCD Type IIb)		
FCD Type III (associated with principal lesion)	Cortical lamination abnormalities in the temporal lobe associated with hippocampal sclerosis (FCD Type Illa)	Cortical lamination abnormalities adjacent to a glial or glioneuronal tumor (FCD Type IIIb)	Cortical lamination abnormalities adjacent to vascular malformation (FCD Type IIIc)	Cortical lamination abnormalities adjacent to any other lesion acquired during early life, e.g., trauma, ischemic injury, encephalitis (FCD Type IIId)	

Epilepsia, 52(1):158–174, 2011

 ■ half of pts DNET and epilepsy have cortical dysplasia associated with the tumor (Chang et al., 2010).

Seizure and Tumor Volume

High-grade tumors presenting with seizures are likely to be **smaller** than those presenting with other symptoms

Lee et al., 2010

Seizure and Location of Tumor

- Higher seizure frequency associated with
 - Supratentorial tumors
 - Located in the cortex and superficially
- Higher epileptogenic supratentorial tumors in
 - Fronto-temporal region (80%) and fronto-parietal region (71%).
- Epileptogenic infratentorially localized tumors in about 2.5% of cases

Evaluation of Sz in a Pt with a Known Tumor

Possible causes of seizure in children with brain tumors

Tumor progression Tumor relapse Secondary malignant neoplasm PRES Toxic encephalopathy Subtherapeutic AED levels Hyponatremia (SIADH, CSW) Hypernatremia (DI) Hypoglycemia

CNS/Shunt infection Cerebrovascular accidents Epilepsy unrelated to tumor

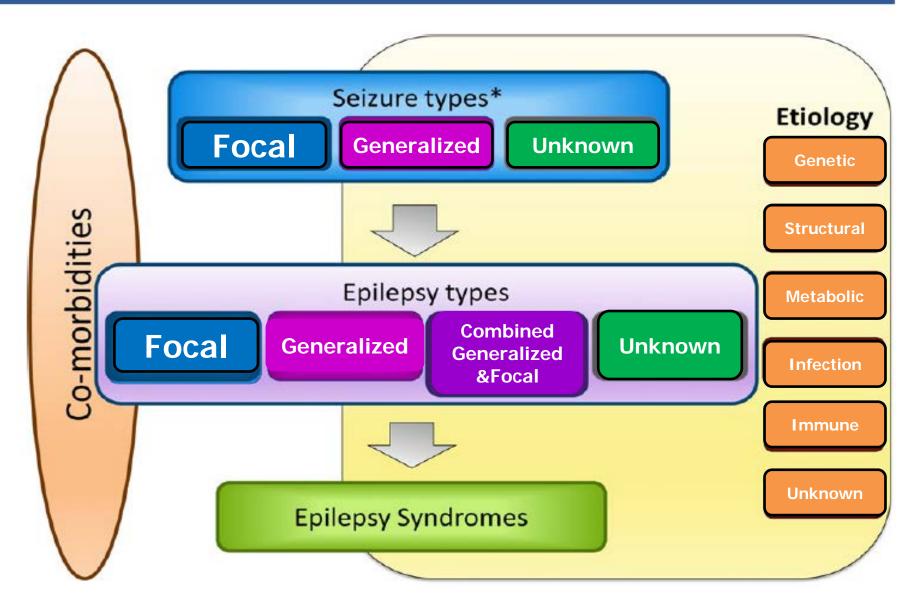
AED, antiepileptic drug; CNS, cerebrospinal fluid; DI, diabetes insipidus; PRES, posterior reversible encephalopathy syndrome; SIADH, syndrome of inappropriate antidiuretic hormone.

Well EM., et al 2012

Late-Onset Seizures

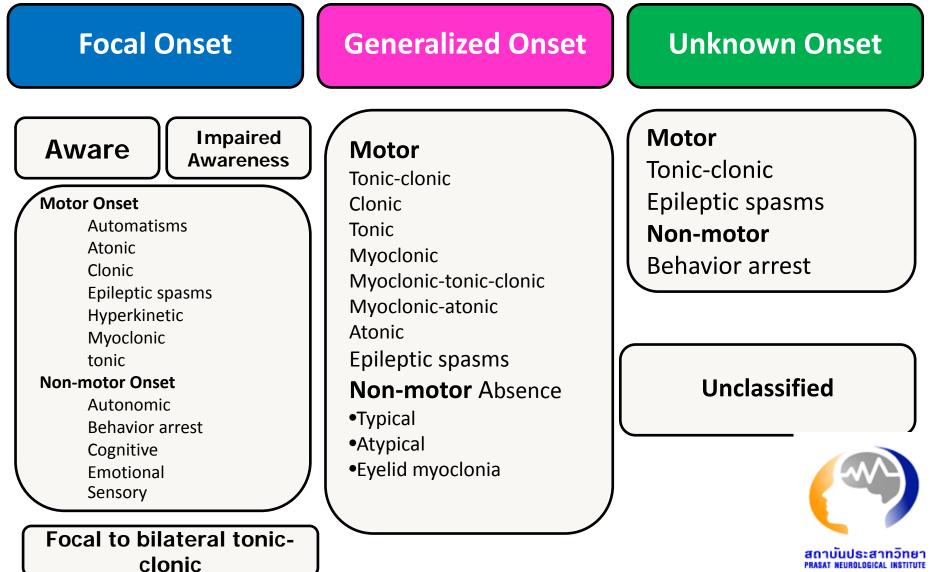
- Late effects from brain tumors and their treatment defined as <u>5 years after diagnosis</u> in cancer survivors
- Packer, 2003 reported seizure :
 - 25% long-term survivors of childhood BT
 - 6.5% had first seizure > 5 years after diagnosis
- Radiation therapy (RT)
 - at doses > 30 Gy to any cortical segment 2-fold increase in risk
 - Seizures more likely in younger children

Semin Pediatr Neurol 2012; 19:3-8

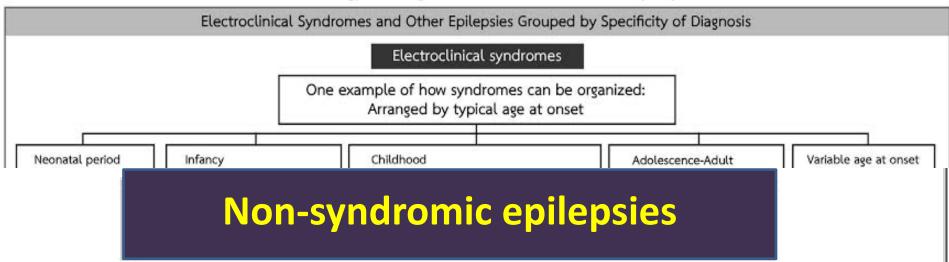

Brain Tumor-related Epilepsy Pharmacological Resistance.

 Complete seizure control was achieved in only 12.6% patients with a brain tumor

(Hildebrand et al., 2005)


 In 15–58% of cases of low-grade glioma, the epilepsy appears to be intractable
 (Duffau et al., 2002)

Classification of the Epilepsies



Scheffer IE, et al Epilepsia, 58(4):512–521, 2017

ILAE 2017 Classification of seizure types (expanded version)

Revised Terminology for Organization of Seizures and Epilepsies 2010

- Epilepsies attributed to organized by structural-metabolic causes
 - Malformations of cortical development (hemimegalencephaly, heterotopias, etc.)
 - Neurocutaneous syndromes (tuberous sclerosis complex, Sturge-Weber, etc)
 - Tumor, infection, trauma, angioma, antenataland perinatal insults, stroke, etc

Epilepsies of unknown cause

สถาบันประสาทอิทยา PRASAT NEUROLOGICAL INSTITUTE

Symptomatology

- Focal onset seizure type
- Seizure semiology depends on
 - Tumor location or adjacent abnormal brain (Primary epileptogenic)
 - -Secondary epileptogenic

Secondary epileptogenesis

- Occur in up to one-third of brain tumor patients where the epileptogenic focus does not correspond to the tumor location.
- Can be seen in low-grade brain tumors in the temporal lobe which have associated hippocampal sclerosis

Pathogenesis of tumor-related epilepsy

- Cellular mechanisms > epileptogenesis : NOT CLEAR
- Two theories of pathogenesis

1. Tumor origin

 Tumor itself may excrete molecules that could make the tumor tissue epileptogenic, or it could change the peri-tumoral microenvironment and turn this into an epileptogenic zone

2. Peri-tumor

- Tumor mechanically compresses the surrounding normal tissue, which eventually becomes epileptogenic after suffering from ischemia and hypoxia.
- Both processes could potentially cause 2°changes
 - In neurotransmitters and their receptors, metabolic changes, and inflammatory responses, eventually leading to epileptic seizures.

Seizure 21 (2012) 153–159

HISTOLOGY

- ECoG studies-> epileptiform activity is associated with a high neuronal density within the lesion (Ferrier et al., 2006).
- Glial tumor: abrupt tissue damage leading to necrosis and haemosiderin deposition and to oedema (Riva, 2005).

LOCATION

Proximity to cortical gray matter ≈ associated with epilepsy HISTOLOGY preferred location

- Most GLIONEURONAL tumors occur in the temporal,
- LGG tend to grow in2'functional areas near, but rarely within, primary eloquent parts of the brain
- OLIGODENDROGLIAL tumors more likely located in frontal lobe

Tumor histology associated with the lobe during brain development Duffau and Capelle 2004

Target	Suggested relevance in (tumour type)	Location	Potential antiepileptic drug		
Glutamate receptors changes					
mGluR	GG, glioma	Tumour/ peritumoral	-		
AMPA receptors	GG	Tumour	PB, TPM		
Kainate receptors	Astrocytoma	Peritumoral	TPM		
NMDA receptors	GN	Tumour	FMT		
GABA receptors	GG, glioma	Tumour	PB, BZD, FBM, TPM, propofol		
Ion level changes					
Fe ³⁺	Glioma	Peritumoral (extracellular)	-		
Mg ²⁺	Glioma	Peritumoral (extracellular)	-		
Ca ²⁺	Glioma	Peritumoral (extracellular)	-		
Na ²⁺	Glioma	Peritumoral (extracellular)	-		
Voltage-gated ion channels	;				
Sodium channels	Glioma	Tumour	PHT, CBZ, TPM, LTG, OCBZ, FBM, VPA, ZNS		
Chloride channels					
NKCC1	GG, glioma	Tumour, peritumoral	-		
KCC2	GG, glioma	Tumour, peritumoral	-		
Potassium channels	GG, glioma	Tumour	(LEV), (TPM) retigabine		
Inflammatory interleukines					
IL-1β	GG	Tumour/ peritumoral	LEV		
Synaptic vesicle proteins		-			
SV2A	GN, glioma	Tumour/ peritumoral	LEV		
Gap junctions (connexins)					
CX32	GN, oligodendroglioma	Tumour/ peritumoral	-		
CX34	GN, astrocytomas	Tumour/ peritumoral	Brain 2012, 125, 1002, 1016		
Enzym changes			Brain 2012: 135; 1002–1016		
Adenosine kinase	Glioma	Tumour/Peritumoral	-		
Amino acids					
Glutamate	Glioma	Peritumoral (extracellular)	-		
GABA	Glioma	Peritumoral (extracellular)	VPA, LTG, GBP, vigabatrin, TGB		
Enzym changes	Glioma	Peritumoral	Vigabatrin, TPM, ZNS, PHT		
PH changes	GN, glioma, meningeoma	Peritumoral	TPM, ZNS		
Pi3K-mTOR pathway	GG, glioma	Tumour	-		

Target	Suggested relevance in (tumour type)	Location	Potential antiepileptic drug
Glutamate receptors chang	es		
mGluR	GG, glioma	Tumour/ peritumoral	-
AMPA receptors	GG	Tumour	PB, TPM
Kainate receptors	Astrocytoma	Peritumoral	TPM
NMDA receptors	GN	Tumour	FMT
GABA receptors	GG, glioma	Tumour	PB, BZD, FBM, TPM, propofol
Ion level changes			
Fe ³⁺			
Mg ²⁺	<u>RECEPTORS</u> CI	<u>nanges</u>	
Ca ²⁺	Both GLIOMA	S & CC oveross s	pecific glutamate receptor
Na ²⁺		s a du express s	pecific glutarilate receptor
Voltage-gated ion channe	subtypes · bo	oth ionotropic & m	etabotropic receptors
Sodium channels	31	•	
Chloride channels	(Aronica et al., 2	2001b; Maas et al., 200	01; Samadani et al., 2007).
NKCC1	GG, glioma	Tumour, peritumoral	-
KCC2	GG, glioma	Tumour, peritumoral	-
Potassium channels	GG, glioma	Tumour	(LEV), (TPM) retigabine
Inflammatory interleukines			
IL-1β	GG	Tumour/ peritumoral	LEV
Synaptic vesicle proteins			
SV2A	GN, glioma	Tumour/ peritumoral	LEV
Gap junctions (connexins)			
CX32	GN, oligodendroglioma	Tumour/ peritumoral	-
CX34	GN, astrocytomas	Tumour/ peritumoral	Brain 2012: 135; 1002–1016
Enzym changes			Diam 2012. 135, 1002 1010
Adenosine kinase	Glioma	Tumour/Peritumoral	-
Amino acids			
Glutamate	Glioma	Peritumoral (extracellular)	-
GABA	Glioma	Peritumoral (extracellular)	VPA, LTG, GBP, vigabatrin, TGB
Enzym changes	Glioma	Peritumoral	Vigabatrin, TPM, ZNS, PHT
	CNL alternation and a second	De alle une e cal	
PH changes	GN, glioma, meningeoma	Peritumoral	TPM, ZNS

Target	Suggested relevance in (tumour type)	Location	Potential antiepileptic drug
Glutamate receptors chang mGluR	es GG, glioma	Tumour/ peritumoral	_
AMPA receptors	GG	Tumour	PB, TPM
Kainate receptors	Astrocytoma	Peritumoral	TPM
NMDA receptors	GN	Tumour	FMT
GABA receptors	GG, glioma	Tumour	PB, BZD, FBM, TPM, propofol
Ion level changes			
Fe ³⁺	Glioma	Peritumoral (extracellular)	-
Mg ²⁺ Ca ²⁺	Glioma Glioma	ंग्moral (extracellular) ्व (extracellular)	-
Na ²⁺	Giorra	(Extracellular)	-
	Decenter chan		al 2001b
Sodium channels	Receptor chan	ges (Aronica et	. al., 2001D)
Chloride channels			
NKCC1			
KCC2	PERITUMORA	AL ASTRUCYTES	express h amount of
Potassium channels	· · · · ·		
Inflammatory interleukin	kainate rec	eptors -> dow	nregulate GABAergic
IL-1β		•	
Synaptic vesicle proteins SV2A	inhibition •	may predispo	se to epilepsy.
Gap junctions (connexin		may preatope	se to epicepsy.
CX32			
CX34	Multiple me	etabotronic gl	utamate receptors
Enzym changes			atamate receptors
Adenosine kinase	aro ovorovo	roccod in tho	peritumoral cortex
Amino acids	are overexp	nesseu in the	pentunoral cortex
Glutamate	Giloma	rentumorai (extracenular)	-
GABA	Glioma	Peritumoral (extracellular)	VPA, LTG, GBP, vigabatrin, TGB
Enzym changes	Glioma	Peritumoral	Vigabatrin, TPM, ZNS, PHT
PH changes	GN, glioma, meningeoma	Peritumoral	TPM, ZNS
Pi3K-mTOR pathway	GG, glioma	Tumour	-

OO, SIION

Extracelluar IONIC CHANGES

- Macro- or microhaemorrhage -> neuronal membrane injury -> **↑**Extracellular iron (Fe3+) >change memb AP of neuron (Shamji, 2009)
 - Mg2+ and Ca2+ probably released from oedema and haemorrhage. \clubsuit Extracellular Mg2+ -> spontaneous epileptiform discharges (Schaller and Ruegg, 2003).

Voltage-gated Ion channels

↑ voltage-gated Na channels in tumor cells-> can generate AP. (Patt et al., 1996; Labrakakis et al., 1997)

(LEV), (TEN) TEUgaDine

 ▲ Na-K-Cl cotransporter (NKCC1) expression &
 ▲ K-Cl cotransporter (KCC2) reported in
 glioneuronal tumors (Aronica et al., 2007a, 2008). ->
 epileptogenicity in GG by modulation of GABA R (Yamada et al., 2004).

Target

mGluR

Fe³⁺ Mg²⁺

Ca²⁺ Na²⁺

Glutamate receptor

AMPA receptors

Kainate receptors NMDA receptors GABA receptors

Ion level changes

Voltage-gated ion Sodium channels

KCC2

IL-1β

SV2A

CX32

CX34 Enzym changes

Amino acids Glutamate

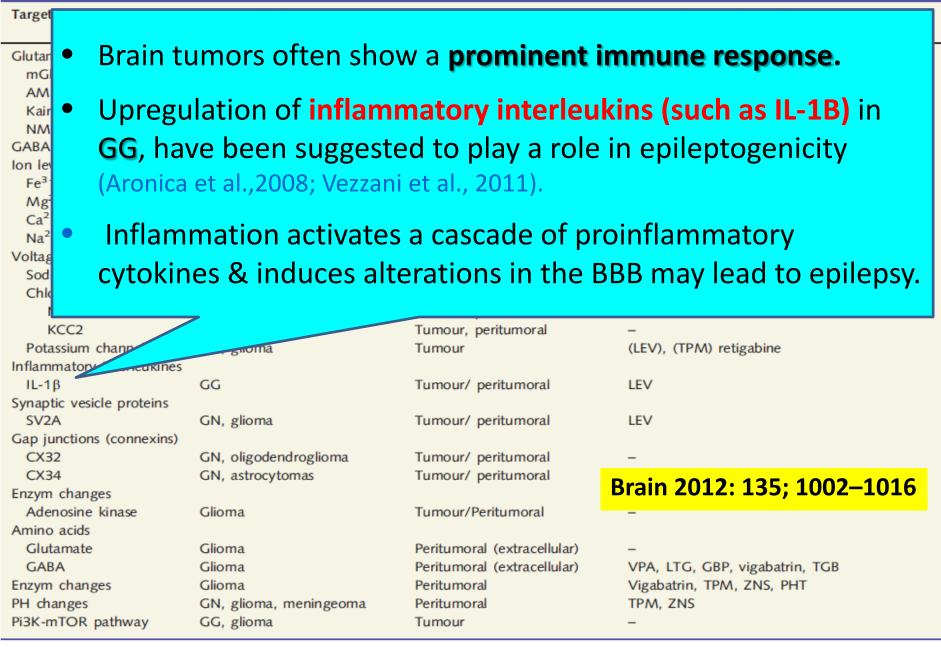
GABA Enzym changes

PH changes

Chloride channel NKCC1

Potassium channers

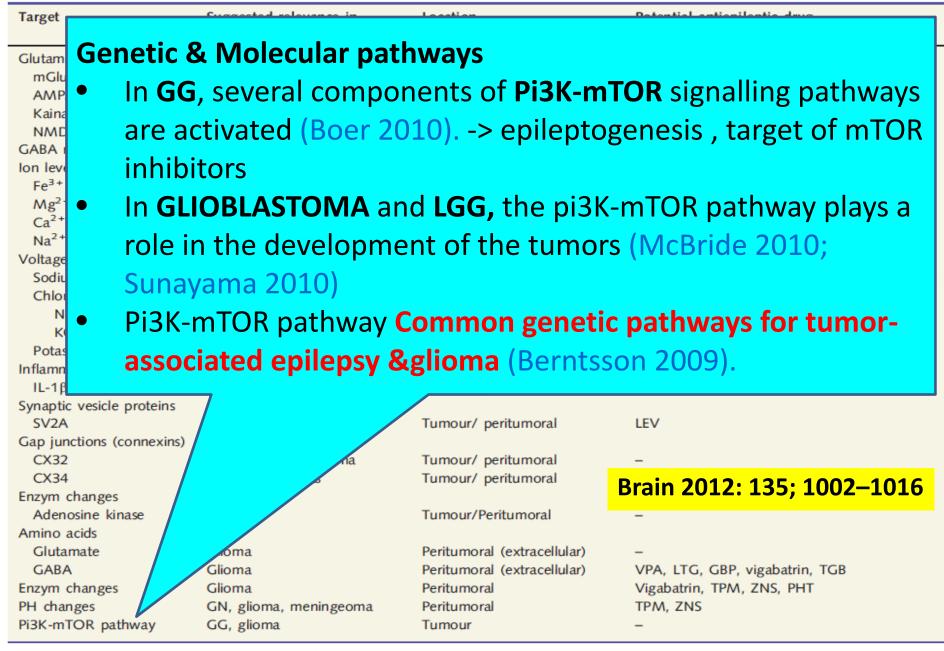
Inflammatory interle


Synaptic vesicle prot

Gap junctions (conn

Adenosine kinase

Pi3K-mTOR pathwa


BZD = benzodiazepines; C LTG = lamotrigine; OCBZ

Target	Suggested relevance in (tumour type)	Location	Potential antiepileptic drug
Glutamate receptors change mGluR AMPA receptors Kainate receptors NMDA receptors GABA receptors Ion level changes Fe ³⁺ Mg ²⁺ Ca ²⁺ Na ²⁺ Voltage-gated ion channel Sodium channels Chloride channels NKCC1 KCC2	GG, glioma GG Astrocytoma GN GG, Glior GLIO GLIO GLIO GLIO GLIO GLIO GLIO GLIO	vesicle protei	<pre>ccumulation during > may</pre>
Potassium channels Inflammatory interleukines IL-1β Synaptic vesicle proteins SV2A	GG, GG GN, glioma	Tumour/ peritumoral Tumour/ peritumoral	LEV
Gap junctions (connexins) CX32 CX34 Enzym changes Adenosine kinase	GN, oligodendroglioma GN, astrocytomas Glioma	Tumour/ peritumoral Tumour/ peritumoral Tumour/Peritumoral	- Brain 2012: 135; 1002–1016
Amino acids Glutamate GABA Enzym changes PH changes Pi3K-mTOR pathway	Glioma Glioma Glioma GN, glioma, meningeoma GG, glioma	Peritumoral (extracellular) Peritumoral (extracellular) Peritumoral Peritumoral Tumour	– VPA, LTG, GBP, vigabatrin, TGB Vigabatrin, TPM, ZNS, PHT TPM, ZNS –

Target	Suggested relevance in (tumour type)	Location	Potential antiepileptic drug
Glutamate receptors change	ges		
mGluR	GG, glioma	Tumour/ peritumoral	-
AMPA receptors	GG	Tumour	PB, TPM
Kainate receptors	Astrocytoma	Peritumoral	TPM
NMDA receptors	GN	Tumour	FMT
GABA receptors	GG, glioma	Tumour	PB, BZD, FBM, TPM, propofol
Ion level changes			
Fe ³⁺	Glioma	Peritumoral (extracellular)	-
	UINICTION		
Ca ²⁺ Na ²⁺	JUNCTION		
Voltage-gat Di	sturbed inter	cellular comr	nunication between
Chlorida			
	al cells_senil	entogenic th	rough gap junction
KCC2 9		cptogenie tri	rough gap junction
	annels: CON		
Inflammato		INEAINS	
IL-1β (//r	opica at al 2001	2)	
Synaptic ve (/4/	onica et al., 2001a	a)	
SV2A	<u>Gu</u>	Tumour/ peritumoral	LEV
Gap junctions (connexins)			
CX32	GN, oligodendroglioma	Tumour/ peritumoral	-
CX34	GN, astrocytomas	Tumour/ peritumoral	Brain 2012: 135; 1002–1016
Enzym changes			
Adenosine kinase	Glioma	Tumour/Peritumoral	-
Amino acids			
Glutamate	Glioma	Peritumoral (extracellular)	-
GABA	Glioma	Peritumoral (extracellular)	VPA, LTG, GBP, vigabatrin, TGB
Enzym changes	Glioma	Peritumoral	Vigabatrin, TPM, ZNS, PHT
PH changes	GN, glioma, meningeoma	Peritumoral	TPM, ZNS
Pi3K-mTOR pathway	GG, glioma	Tumour	-

Target	Suggested relevance in (tumour type)	Location	Potential antiepileptic drug	
Glutamate receptors cha	nges			
mGluR	GG, glioma	Tumour/ peritumoral	-	
AMPA receptors	GG	Tumour	PB, TPM	
Kainate receptors	Astrocytoma	Peritumoral	TPM	
NMDA receptors	GN	Tumour	FMT	
GABA receptors	GG, glioma	Tumour	PB, BZD, FBM, TPM, propofol	
on level changes				
Fe ³⁺	Glioma	Peritumoral (extracellular)	-	
Mg ²⁺				
Ca ²⁺				
Na ²⁺	Nextracellular	r GLUTAMAT	F found in	
	rentracentatai			
Sodium channels	oritum oral b	rain naranahu	ma of potionto	Z
Chloride channels	peritumoral p	rain parenchy	ma of patients	
NKCC1		• • •		
KCC2	vith enilensy	compared to	non-tumour	
		compared to	non tamoa	
nflammatory interleu	patients with	onilonev		
IL-1β		epiiepsy		
ynaptic vesicle prote	de Groot and Sont	(1000000000000000000000000000000000000		
	ue groot and som			
CX32		pentumora.		
CX32 CX34	GN, and	Tumour/ peritumoral	Brain 2012: 135; 1002–10] 16
CX32 CX34 nzym changes	GN, and	Tumour/ peritumoral	Brain 2012: 135; 1002–10] 16
CX32 CX34 nzym changes Adenosine kinase	GN, and	pentumora.	Brain 2012: 135; 1002–10	1 6
CX32 CX34 nzym changes Adenosine kinase smino acids		Tumour/ peritumoral Tumour/Peritumoral	Brain 2012: 135; 1002–10	1 6
CX32 CX34 nzym changes Adenosine kinase mino acids Glutamate	Glioma	Tumour/ peritumoral Tumour/Peritumoral Peritumoral (extracellular)	-	16
CX32 CX34 inzym changes Adenosine kinase Mino acids Glutamate GABA	Glioma Glioma	Tumour/ peritumoral Tumour/Peritumoral Peritumoral (extracellular) Peritumoral (extracellular)	– – VPA, LTG, GBP, vigabatrin, TGB	1 6
CX34 Enzym changes Adenosine kinase Amino acids Glutamate	Glioma	Tumour/ peritumoral Tumour/Peritumoral Peritumoral (extracellular)	-	1 ε

REVIEW ARTICLE Epilepsy in patients with a brain tumour: focal epilepsy requires focused treatment

Marjolein de Groot,^{1,2} Jaap C. Reijneveld,^{1,3} Eleonora Aronica^{2,4} and Jan J. Heimans¹

	Seizure 21 (2012) 153-159	
		THE NAME OF TAXABLE PARTY.
	Contents lists available at SciVerse ScienceDirect	10th
		1 C - C - C C -
See Charles	C a ' anna	seizure
S. S. C.	Seizure	Start Land
St. Aller		The state
ALCONING FOR DESIGNATION		- J. All of the
ELSEVIER	journal homepage: www.elsevier.com/locate/yseiz	tertingen av der
Review		

The pathogenesis of tumor-related epilepsy and its implications for clinical treatment

Gan You^a, Zhiyi Sha^b, Tao Jiang^{a,*}

^a Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

^b Department of Neurology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA