

THREE GENERATIONS OF AEDS

SELECTING THE FIRST AED	
Which medications?	
 ลักษณะการชักและประเภทของโรคลมชักของผู้ป่วย การบริหารยา ผลข้างเคียงของยากันชัก Drug interaction กรณีที่ผู้ป่วยได้ยาหลายชนิดพร้อมกัน Special situations/ other comorbidities Reproductive age Elderly Hepatic impairment Renal impairment 	
CHOOSING AEDS IN PATIENTS WITH MEDICAL COMORBIDITIES	

	_
Special situations	
Hepatic and renal dysfunction	
 Other medical conditions 	
Cardiac conditionsHIV infected patients	
Infectious diseasesTransplant patients	
Patients with brain tumorElderly	
Psychiatric patients	
• Women	
	1
Herefore and sevel destruction	
Hepatic and renal dysfunction	
	1
	_
Seizures and epilepsy in this condition	
	A

- More acute seizures and status epilepticus precipitated by metabolic causes
- Need to differentiate between alteration of consciousness from metabolic encephalopathy and nonconvulsive status epilepticus (Clinically and EEG)

Hepatic	dysfu	nction
---------	-------	--------

Factors affecting hepatic clearance

- The extent of drug binding to the blood component
- Hepatic blood flow
- Hepatic metabolic activity

Effects	Older AEDs	New AEDs
Measurable increased in	PHT	-
free fraction with hypoalbuminemia	VPA	
Metabolism affected by	PB	GBP, LEV,
renal disease		TPM
Metabolism affected by	CBZ, PHT,	LTG, ZNS,
liver disease	VPA	OXC, TGB

Gabapentin Lamotrigine	0	4-6	Renal, 100%	Dose dependent absorption
Lamotrigine			Not metabolize	, ,
	55	15-30	Hepatic, 90% Glucoronidation	Clearance increased by enzyme inducing AEDs, reduced by VPA
Topiramate	9-17	15-23	Renal, 40-70%	Fraction hepatically metabolized, increased by enzyme inducing AEDs
Levetiracetam	0	6-8	Renal, 66%; hydrolysis of acetamide gr, 34%	Metabolism is nonhepatic hydrolysis
Oxcarbazepine	40	4-9	Hepatic, 70% Hepatic conversion to active metabolite	Based upon 10 Hydroxy carbazepine (MHD), the major active metabolite
Zonisamide	40-60	24-60	Hepatic, 70%	Clearance increased by enzyme inducing AEDs
Pregabaline	0	6	Renal Not metabolize	

Dosing adjustment for patients with impaired hepatic function

 There is insufficient information available to make recommendations on the necessity of dosage adjustment

Patients with impaired hepatic function

 Free fractions of diazepam, PHT, and VPA increase as a result of reduced circulating albumin concentrations. Frequent serum determinations of free fractions and gradual dose regulations are required.

Patients with impaired hepatic function

- Caution should be taken if VPA is used inpatients with liver disease.
- Hepatic dysfunction is less of a concern with PB, gabapentin, levetiracetam, topiramate, and zonisamide.

Renal dysfunction

Effects	Older AEDs	New AEDs
Measurable increased in	PHT	-
free fraction with hypoalbuminemia	VPA	
Metabolism affected by	PB	GBP, LEV,
renal disease		TPM
Metabolism affected by	CBZ, PHT,	LTG, ZNS,
liver disease	VPA	OXC, TGB

Dosing adjustment for patients with impaired renal function Creatinine clearance (mL/min) Dosage (mg) Gabapentin >60 400 tid 30-60 300 bid 15-30 300 od <15 300 every other day hemodialysis 200-300* supplement Levetiracetam >80 500-1500 bid 50-80 500-1000 bid

250-750 bid

250-500 bid

*with supplement dose after HD supplement

500-1000*q 24 hr then 250-500 mg

30-50

hemodialysis

<30

Creatinine clearance (mL/min)	Dosage (mg)
opiramate	
>70	Normal dosage
10-70	Decrease dosage 50%
<10	Decrease dosage 75%
hemodialysis	Consider supplement

	% Renal excretion	%Protein binding	Dosing in renal impairment	НД
PHT	<5	90	NA	NA*
CBZ	1-3	75	NA	NA
PB	25	20-45	CrCL<10 ↓ dose	HD: Dose before and 50 % dose after HD PD: 50 % of the normal dose CRRT: No sufficient data; no initial dose adjustment is needed; possible significant removal by CRRT
VPA	<7	80-90	NA	NA
Clona zepam	<2	85	NA	NA
OXC	20-30	40	CrCl< 30: Initiate at 50 % starting dose (300 mg/day) then titrate cautiously	
				Seizure 2020;76:143–152

	% Renal excretion	%Protein binding	Dosing in renal impairment	HD
LEV	66	<10	See table	HD: 500–1000 mg/day + supplement al dose post dialysis (250–500 mg) PD: Dose for CrCl < 10 CRRT: Significantly removed; suggested dosage 1000 mg q12h
LTG	10	55	Start at low dose and titrate cautiously	HD: No sufficient data; start at low dose and titrate cautiously; give dose post dialysis. PD: No data; start at low dose and titrate cautiously CRRT: No data; start at low dose and titrate cautiously
TPM	50	13-41	See table	HD: 100-200 mg/day + supplemental dose post dialysis (50-100 mg) PD: 100-200 mg/day CRRT: No data; possibly removed

	excretion	%Protein binding	Dosing in renal impairment	HD
GBP	100	<10	See table	HD: Dose based on CrCl + supplemental dose post dialysis (125–350 mg) PD: Initiate dosing as in patients with CrCl <15 CRRT: Initiate dosing as in patients with crCl 15-50
PGB	90	-	CrCl 30-60: 75-300 mg/day CrCl 15-30: 25-150 mg/day CrCl <15: 25-75 mg/day	HD: Dose based on CrCl + supplemental dose post dialysis (25–150 mg) PD: No data; Initiate dosing as in patients with CrCl <15 CRRT: No data; likely to be significantly removed by CRRT
			mg/day CrCl <15: 25-75	PD: No data; Initiate dosing as in patients with CrCl <15

	% Renal excretion	%Protein binding	Dosing in renal impairment	HD	
LCM	40	<15	CrCl > 30: No dosage adjustment needed CrCl< 30: 50-300 mg/d	HD: 50-300 mg/d + supplemental dose post dialysis PD: No data CRRT: No sufficient data; likely removed by CRRT; no initial dose adjustment needed	
PER	-	95	CrCl > 30: No dosage adjustment needed CrCl< 30: No data	HD: No data PD: No data CRRT: No data; less likely to be removed	
CrU< 30: No data removed Seizure 2020;76:143–152					

AEDs that can cause renal stone

- Topiramate
- Zonisamide

USING AEDS IN PATIENTS WITH OTHER MEDICAL CONDITIONS

Metabolic pathways of AEDs CYP 1A2 CYP 2C9 CYP 2C19 CYP 3A4 Carbamazepine* Phenytoin* Phenytoin Carbamazepine Phenobarbital Diazepam Tiagabine Valproate* Zonisamide Ethosuximide Felbamate *Minor metabolic pathway. Perampanel

Enzyme inhibitor Enzyme inducer Sodium valproate Phenytoin Carbamazepine Phenobarbital Oxcarbazepine Topiramate >200 mg/d

Effects of enzyme inducing drugs on the concentration and clearance of concurrent AEDs				
Effect on Concurrent AED Serum Concentration	Approximate Change in AED Clearance			
↓ Ethosuximide	120-50%			
↓ Valproate	↑ Two- to fourfold			
↓ Lamotrigine	↑ Two- to fourfold			
↓ Topiramate	↑40–50%			
↓ Tiagabine	↑ Two- to fourfold			
↓ Felbamate	↑50%			
↓ Zonisamide	↑30–50%			
↓ Oxcarbazepine	1 25–40%			
Levetiracetam	No change			

Between AEDs

- Enzyme inhibitors
- Sodium valproate → ↑↑↑ lamotrigine
- Topiramate, oxcarbazepine \rightarrow \updagged phenytoin

Interaction with other drug	I	nteraction	with	other	drugs
-----------------------------	---	------------	------	-------	-------

- Interaction between CYP3A4 inhibitors and carbamazepine
- Warfarin
- OCPs
- · Psychiatric drugs
- Cardiac drugs
- Chemotherapy and immunosuppressive agents

	Commonly	used med	ications	that	inhibit the	CYP3A
--	----------	----------	----------	------	-------------	-------

Erythromycin Fluvoxamine Clarithromycin Nefazodone Troleandomycin Sertraline Ritonavir Cimetidine Diltiazem Indinavir Verapamil Nelfinavir Fluconazole Omeprazole Itraconazole Propoxyphene Ketoconazole

USING AEDS IN PATIENTS WITH CARDIAC CONDITIONS

Using AEDs in cardiac conditions

- · Side effects
- Drug interaction

IV AEDs for established SE

	Route of administration	Adult dose
Phenytoin	IV (<50 mg/min)	15-20 mg/kg
Fosphenytoin	IV (<100 mg PE/min)	15-20 mg PE/kg
Phenobarbital	IV (<100 mg/min)	10-20 mg/kg
Valproate	IV (50-100 mg/min)	20-30 mg/kg
Levetiracetam	IV (100 mg/min)	2000-4000 mg
Lacosamide	IV (30-60 min/ up to 15 min)	200-400 mg

Shorvon S. Curr Opin Neurol 2011;24:165–170

Interaction with cardiac drugs

- - ◆ digoxin level (upreg. P-gp)
- Enzyme inducers
 - ightarrow calcium channel blocker level
 - ◆ beta blocker level
- Verapamil and diltiazem inhibits carbamazepine metabolism

-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
_			
_			
_			
_			
_			

Drug interaction with warfarin

- · Metabolites through CYP3A4, 2C9
- Phenytoin, phenobarbital and carbamazepine reduce the concentration of warfarin by up to 50-65%
- Phenobarbital and carbamazepine also reduce the anticoagulation effects of warfarin metabolites
- Newer AEDs do not have significant interaction with anticoagulant

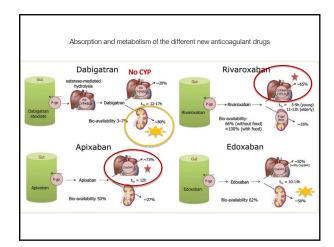
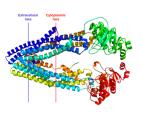

Interaction between AEDs and NOACs

Table 2 Non-YKA oral anticoagulant drugs, approved for prevention of systemic embolism or stroke in patients with non-valvular AF


	Dabigatran	Apixaban	Edoxaban	Rivaroxaban
Action	Direct thrombin inhibitor	Activated factor Xa inhibitor	Activated factor Xa inhibitor	Activated factor Xa inhibitor
Dose	150 mg BID	5 mg BID	60 mg OD ^c	20 mg OD
	110 mg BID ^{a,b} (75 mg BID) ^b	2.5 mg BID ^a	30 mg OD ^a	15 mg OD ^a
Phase III clinical trial	RE-LY ²⁵	ARISTOTLE ²⁶ AVERROES ²⁷	ENGAGE-AF ²⁸	ROCKET-AF ²⁹

- Intestinal absorption and renal elimination of NOACs are dependent on the intestinal and renal permeability glycoprotein (P-gp) efflux transporter protein system
- Some NOACs are substrates of the hepatic CYP3A4 enzymes
- Induction of P-gp or CYP3A4 might decrease serum NOAC levels, reduce anticoagulant effects and lead to an increase in embolic risk.

•			
•			
•			
•			
•			
•			

P-glycoprotein

- · Permeability glycoprotein
- Also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette subfamily B member 1 (ABCB1) or cluster of differentiation 243 (CD 243)
- Important protein of the cell membrane that pumps foreign substances out of cells
- ATP-dependent efflux pump with broad substrate specificity
- Encoded by the ABCB1 gene

P glycoprotein expression

- <u>Intestinal epithelium:</u> pumps xenobiotics (eg. toxins or drugs) back into the intestinal lumen
- <u>Liver cells</u>: pumps xenobiotics into bile ducts
- Cells of the proximal tubules of the kidney: pumps xenobiotics into urinary filtrate (in the proximal tubule)
- <u>Capillary endothelial cells composing the blood brain barrier and blood testis barrier: pumps back into the capillaries</u>

P-gp transports various substrates across the cell membrane

- Drugs such as colchicine, desloratadine, tacrolimus and quinidine.
- Chemotherapeutic agents such as topoisomerase inhibitors (i.e. etoposide, doxorubicin), microtubule-targeted drugs (i.e. vinblastine), and tyrosine kinase inhibitors (i.e. gefitinib, sunitinib)
- Lipids
- Steroids
- Peptides
- Bilirubin
- · Cardiac glycosides like digoxin
- Immunosuppressive agents
- · Glucocorticoids like dexamethasone
- HIV-type 1 antiretroviral therapy agents like protease inhibitors and nonnucleoside reverse transcriptase inhibitors

(3)	Europace (2015) 17, 1467–1507 doi:10.1093/europace/euv309
SOCIETY OF	doi:10.1073/edi opace/edv307

EHRA PRACTICAL GUIDE

Europace (2015) 17, 1467–1507

Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation

Hein Heidbuchel¹*, Peter Verhamme², Marco Alings³, Matthias Antz⁴, Hans-Christoph Diener⁵, Werner Hacke⁶, Jonas Oldgren⁷, Peter Sinnaeve², A. John Camm⁸, and Paulus Kirchhof^{7,10}

Advisors:, Azhar Ahmad, M.D. (Boehringer Ingelheim Pharma), Jutta Heinrich-Nols, M.D. (Boehringer Ingelheim Pharma), Susanne Hess, M.D. (Bayer Healthcare Pharmaceuticals), Markus Müller, M.D., Ph.D. (Pfizer Pharma), Felix Münzel, Ph.D. (Daiichi-Sankyo Europe), Markus Schwertdeger, M.D. (Daiichi-Sankyo Europe), Martin Van Eickels, M.D. (Bayer Healthcare Pharmaceuticals), and Isabelle Richard-Lordereau, M.D. (Bristol Myers Squibb/Pfizer)

Document reviewers., Gregory Y.H. Lip., (Reviewer Coordinator; UK), Chern-En Chiang, (Taiwan), Jonathan Piccini, (USA), Tatjana Potpara, (Serbia), Laurent Fauchier, (France), Deirdre Lane, (UK), Alvaro Avezum, (Brazil), Torben Bjerregaard Larsen, (Denmark), Guiseppe Boriani, (Italy), Vanessa Roldan-Schilling, (Spain), Bulent Gorenek, (Turkey), and Irene Savelieva, (UK, on behalf of EP-Europace)

	via	Dabigatran	Apixaban	Edoxaban	Rivaroxaban
Fungostatics					
Fluconazole	Moderate CYP3A4 inhibition	No data yet	No data yet	No data yet	+42% (if systemically administered) ²⁴⁷
Itraconazole; Ketoconazole; Posaconazole; Voriconazole;	potent P-gp and BCRP competition; CYP3A4 inhibition	+140-150% (US: 2 x 75 mg if CrCl 30-50 ml/min)	+100% ^w	+87-95% ⁴⁴ (reduce NOAC dose by 50%)	Up to +160% ²⁴⁷
Immunosuppressive					
Cyclosporin; Tacrolimus	P-gp competition	Not recommended	No data yet	+73%	Extent of increas unknown
Antiphlogistics					
Naproxen	P-gp competition	No data yet	+55% ²⁵⁴	No effect (but pharmacodynamically increased bleeding time)	No data yet
Antacids					
H2B; PPI; Al-Mg-hydroxide	GI absorption	Minus 12- 30% ^{45, 53, 58}	No effect ⁵⁵	No effect	No effect ^{241, 242}
Others					
Carbamazepine***; Phenobarbital***; Phenytoin***; St John's wort***	P-gp/ BCRP and CYP3A4/CYP2J 2 inducers	minus 66% ²⁵³	minus 54% ^{SmPC}	minus 35%	Up to minus 50%

SPECIAL ARTICLE

__ European Heart Journal 2018;39:1330-1393

The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation

Jan Steffel¹*, Peter Verhamme², Tatjana S. Potpara³, Pierre Albaladejo⁴, Matthias Antz⁵, Lien Desteghe⁶, Karl Georg Haeusler⁷, Jonas Oldgren⁸, Holger Reinecke⁹, Vanessa Roldan-Schlling¹*, Nigel Rowell¹¹, Peter Sinnaeve², Ronan Collins¹², A. John Camm¹³, and Hein Heidbüchel^{6,14}

Advisors: Martin van Eickels, M.D. (Bayer Healthcare), Jutta Heinrich-Nols, M.D. (Boehringer Ingelheim), Markus Müller, M.D., Ph.D. (Pfizer), Wolfgang Zierhut M.D. (Daiichi-Sankyo) and Poushali Mukherjea, Ph.D. (Bristol-Myers Squibb)

Document reviewers (ESC scientific document group): Gregory YH Lip (EHRA Review Coordintaor; UK, Denmark), Jeffrey Weitz (Canada), Laurent Fauchier (France), Deirdre Lane (UK), Giuseppe Boriani (Italy), Andreas Goette (Germany), Roberto Keegan (Argentina), Robert MacFadyen (Australia), Chern-En Chiang (Taiwan), Boyoung Joung (Korea), and Wataru Shimizu (Japan)

SmPC= Sum	Via ^{142,145,146} mary of product characteristics	Dabigatran etexilate	Apixaban ¹³⁰	Edoxaban	Rivaroxaban
P-gp substrate		Yes	Yes	Yes	Yes
CYP3A4 substrate		No	Yes (≈25%)	No (<4%)	Yes (≈18%)
Drug					
Carbamazepine	Strong CYP3A4/P-gp induction; CYP3A4 competition	ŚmPC	-50% ^{Smirc}	-35% ^{SmPC}	SmPC, Ref. ¹⁴⁷
Ethosuximide	CYP3A4 competition; No relevant interaction known/assumed				
Gabapentin	No relevant interaction known/assumed				
Lamotrigine	P-gp competition; No relevant interaction known/assumed				
Levetiracetam	P-gp induction; P-gp competition				
Oxcarbazepine	CYP3A4 induction; P-gp competition				
Phenobarbital	Strong CYP3A4/P-gp induction; P-gp competition		SmPC	SmPC	SmPC
Phenytoin	Strong CYP3A4/P-gp induction; P-gp competition	SmPC, Ref. ¹⁴⁸	SmPC	SmPC	SmPC /
Pregabalin	No relevant interaction known/assumed				
Topiramate	CYP3A4 induction; CYP3A4 competition				
Valproic acid	CYP3A4/P-gp induction				Ref,149
Zonisamide	CYP3A4 competition; No relevant				

USING AEDS IN PATIENTS WITH INFECTIOUS CONDITIONS

Antibiotics/AEDs interaction Drugs Drug groups Effects on AEDs Carbapenems ↓↓↓ VPA levels Antibiotics ↑ CBZ levels Macrolides Fluconazole Itraconazole Antifungals ↑ CBZ levels ↑ PHT levels Ketoconazole ↓ PHT, CBZ, VPA, LTG levels Tuberculostatics Rifampicin ↑ PHT, CBZ, VPA, LTG levels Isoniazid

SI			epsia () RESEA	pen RCH AF	RTICL	E				
		Ca	rbaper	nems a	nd val	proate	: A cons	umptiv	e relation	ship
			*†Pet	ter Bede, ‡l	Diane Lav	vlor, ‡Dam	odar Solanki	, and *§Nor	man Delanty	
					Epi		(1):107-111, 20 2/epi4.12030	17		
			_	Table	I. Summa	y of the demog	raphic and clinical	profile of the ca	ses	
				Last	Duration of	VPA measured	VPA level	Patient		
			Pre-meropenem	pre-meropenem	meropenem	after initiation of	during meropenem	symptomatic of		Normalization of VPA le
Case	Age	Sex	VPA dose	VPA level	therapy	meropenem	therapy	low VPA	Intervention	post-meropenem thera
I	55	Female	800 mg BD	19	+14 days	24 h	8	Yes; seizures	Increased dose + bolus + alternative AED	RIP
2	42	Male	600 mg BD	41	10 days	24 h	⊲	No	No	4 weeks
3	24	Female	600 mg TDS	45	3 days	72 h	9	Yes; seizures	Increased dose + bolus + alternative AED	RIP
	42	Male	625 mg BD	N/A	24 + 7 days	Meropenem introduced first	6	Yes; seizures	Increased dose + bolus	4 weeks
4			600 mg BD	27	3 days	72 h	9	No, but intubated	Meropenem discontinued	RIP
5	78	Male								
5	78 25	Male Male	1,300/1,200 mg	106	7 days	7 days	H.	Yes; seizures	No	Checked 2 months later

Potential mechanism of interaction between VPA and carbapenems

- Carbapenems enhance the glucuronidation of VPA by increasing uridine diphosphate-glucuronic acid levels, resulting in decreased serum levels of VPA
- Multidrug-resistance proteins on adenosine triphosphatebinding cassette transporters on erythrocyte membranes may be inhibited by carbapenems. Therefore, VPA is not effluxed out of the erythrocytes, which results in decreased serum levels of VPA
- When VPA is given orally, its absorption into the intestinal lumen may be restricted by intravenously administered carbapenem antibiotics. This may relate to the inhibition of the membrane transporter in intestinal cells

HIV PATIENTS	~~~

D	rug	Protein Binding (%)	Metabolism
o	lder AEDs		
	Phenobarbital	45	CYP450
	Phenytoin	90	CYP450-2C
	Carbamazepine	\sim 75	CYP450-3A, 2C
	Valproate	90	Gluc
N	ewer AEDs		
	Gabapentin	Minimal	Nil
	Lamotrigine	55	Gluc, CYP450
	Oxcarbazepine	40	Gluc, CYP450
	Topiramate	Minimal	CYP450-3A
	Levetiracetam	Minimal	Enzymatic hydrolysis
	Tiagabine	96	Hydrolysis
	Zonisamide	Minimal	Gluc, CYP450
	Pregabalin	Minimal	Negligible
H	AART		
	NRTI	Minimal to ~38	Gluc
	NNRTI	50-99	CYP450
	PI	>90	CYP450

Interaction between ARVs and AEDs								
ARV	Protein binding (%)	Metabolism	Potential drugs that may have interaction with AEDs	AEDs that may have interaction with				
NRTI	Min- 38	Gluc	↑ Zidovudine	VPA				
NNRTI	50-90	CYP450						
PI	>99	CYP450	↓ Lopinavir/ Ritonavir	PHT				

SPECIAL REPORT

Antiepileptic drug selection for people with HIV/AIDS: Evidence-based guidelines from the ILAE and AAN

*†Gretchen L. Birbeck, ‡Jacqueline A. French, §Emilio Perucca, ¶David M. Simpson,
#Henry Fraimow, **Jomy M. George, ††Jason F. Okulicz, ‡†David B. Clifford,
§§Houda Hachad, and §§René H. Levy for the Quality Standards subcommittee of the American
Academy of Neurology and the ad hoc task force of the Commission on Therapeutic Strategies of
the International League Against Epilepsy

Epilepsia, 53(1):207-214, 2012

Recommendations

- AED–ARV administration may be indicated in up to 55% of people taking ARVs.
- Patients receiving phenytoin may require a lopinavir/ritonavir (PI) dosage increase of approximately 50% to maintain unchanged serum concentrations (Level C: one class II study).
- Patients receiving valproic acid may require a zidovudine (NRTI) dosage reduction to maintain unchanged serum zidovudine concentrations (Level C).
- Coadministration of valproic acid and efavirenz (NNRTI) may not require efavirenz dosage adjustment (Level C: one class II study).

Epilepsia, 53(1):207-214, 2012

Recommendations

 It may be important to avoid enzyme inducing AEDs in people on ARV regimens that include protease inhibitors or non nucleoside reverse transcriptase inhibitors because pharmacokinetic interactions may result in virologic failure, which has clinical implications for disease progression and development of ARV resistance. If such regimens are required for seizure control, patients may be monitored through pharmacokinetic assessments to ensure efficacy of the ARV regimen (Level C: one class II study).

Epilepsia, 53(1):207-214, 2012

USING AEDS IN TRANSPLANT PATIENTS	
Using AEDs in transplant patients CBZ, oxcarbazepine, PB, and PHT may reduce cyclosporine, tacrolimus, and corticosteroid blood levels with a delayed effect of up to 10 days. Azathioprine, mycophenolate mofetil, and OKT3 metabolism are not significantly affected by AEDs.	
USING AEDS IN BRAIN TUMOR AND ONCOLOGIC PATIENTS	

Potentials interaction between AEDs and chemotherapy

- Enzyme inducing AEDs have been shown to have effects on levels of chemotherapy that metabolite through CYP 450
- Taxanes, vinca alkaloids, methotrexate, teniposide, and camptothecin analogues such as irinotecan
- Tyrosine kinase inhibitors, target therapy

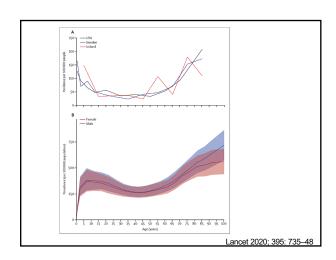
Vecht CJ, Wagner GL, Wilms EB. Lancet Neurol 2003;2:404-9.

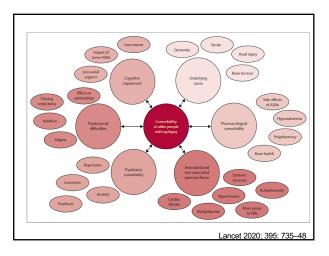
Effects of AEDs on steroid metabolism

AED	Steroid	No. of Patients	Change in Steroid Activity	Factor of Change	Reference
Carbamazepine	Prednisolone	6	Cl↑	1.41	Bartoszek, 1987 ⁹¹
			T 1/2 ↓	0.64	
Phenobarbital		6	CI ↑	1.79	Bartoszek, 19879
			T 1/2 ↓	0.44	
Phenytoin		2	CI ↑	1.77	Bartoszek, 19879
			T 1/2 ↓	0.71	
Carbamazepine	Methylprednisolone	5	CI ↑	3.09	Bartoszek, 19879
			T 1/2 ↓	0.46	
Phenobarbital		5	Cl ↑	4.42	Bartoszek, 19879
			T 1/2 ↓	0.46	
Phenytoin		2	CI ↑	5.79	Bartoszek, 19879
			T 1/2 ↓	0.29	
Phenytoin	Dexamethasone	15	Cl ↑	2.93	Chalk, 1984 ⁹⁷
			T 1/2 ↓	0.54	
Phenytoin		6	Plasma Conc ↓	0.5	Wong, 198598

Abbreviations: bid, bis in die; CBZ, carbamazepine; EIAEDs, enzyme-inducing anti-epileptic drugs; PB, phenoborbital; PCV: procarbazine, CCNU vincristine; PHT, phenytain; VPA, valpraic acid; CL, clearance; T I, plasma drug elimination half-life; AUC, area under time-concentration curve; MTD

Neuro-Oncology Practice 2016; 3: 245–260


Potentials interaction between AEDs and chemotherapy


- In a study of 716 children with ALL, 40 children who were on enzyme-inducing AEDs had worse event-free survival (hazard ratio 2.67 [95% CI, 1.50 to 4.76]), hematological relapse (3.40 [1.69 to 6.88]) and CNS relapse (2.90 [1.01 to 8.28]).
- These children were found to have a higher clearance of teniposide and methotrexate.

Relling MV, Pui CH, Sandlund JT, et al. Lancet 2000;356:285-90

	_
Potentials interaction between AEDs and chemotherapy	
In a study on glioblastoma multiforme treated with adjuvant CCNU after surgery and radiotherapy, patients receiving enzyme-inducing AEDs (carbamazepine in 80% of patients) had a significantly shorter survival,10.8 versus 13.9 months, than patients treated withnon-enzyme-inducing AEDs (valproic acid in 80% of patients)	
Oberndorfer S, et al. J Neurooncol 2005;72:255–60	
Patients with brain tumors	
i adonto with brain tumors	
 Enzyme-inducing AEDS can interfere with the level of concomittent chemotherapy and should be avoided. Valproic acid may be considered as a first-line agent, although physicians should be aware of the potentially enhanced toxicity of concomitant agents that share the same P-450 coenzyme metabolic pathway. 	
Patients with brain tumors	
 Newer AEDs that do not metabolite through CYP 450 system also can be used. More evidence is still needed. 	

USING AEDS IN ELDERLY PATIENTS

Issues in epilepsy treatment in the elderly

- Changes in pharmacokinetics of AEDs in the elderly
- Side effects of the AEDs esp. cognitive side effects
- · Drug interaction
- · Osteoporosis

Pharmacokinetic changes in the elderly

Lean body mass ♥
Total body water mass ♥
Proportion of fat ♥

Volume distribution of hydrophilic drugs and lipophilic drugs ♥

Serum drug concentrations 🛧

Pharmacokinetic changes in the elderly

- Decreased albumin level leads to increased free fraction of drugs in the body.
- Measurement of total serum drug concentration may not reflect the true unbound drug level.
- Reduce hepatic metabolism (evidence is still unclear) and reduce renal excretion with reduction of creatinine clearance

Cautio	on of SE of AEDs in elderly
AEDs	Special precautions
Phenobarbital	Drowsiness, cognitive dysfunction May reduce effects of other drugs (enzyme inducer)
Phenytoin	Reduced metabolism and clearance Reduced protein binding → increased free fraction Increase incidence of adverse effects PHT level may be increased by amiodarone, cimetidine, isoniazid, trazodone May reduce effects of other drugs (enzyme inducer)
Carbamazepine	Increase incidence of adverse effects May reduce effects of other drugs (enzyme inducer) Hyponatremia
Sodium valproate	Drowsiness, parkinsonism Thrombocytopenia
Oxcarbazepine	Increase incidence of adverse effects Hyponatremia
Topiramate	Cognitive side effects at higher dosage (can be avoided by slow titration)

il	epsia,	**(*):1-13, 2013	
Ŀ	10.11	11/cpi.12074	

SPECIAL REPORT

Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes

*Tracy Glauser, †Elinor Ben-Menachem, ‡Blaise Bourgeois, \$Avital Cnaan, †Carlos Guerreiro, #Reetta Kälviäinen, **Richard Mattson, ††Jacqueline A. French, ‡‡Emilio Perucca, §§Torbjorn Tomson for the ILAE subcommission of AED Guidelines

SDivision of Biostatistics and Study Methodology, Center for Translational Science, Children's National Medical Center, Washington, District of Columbia, U.S.A.; Poparrment of Neurology, University of Campinas (UNICAMP), Hospical also Clinica, Campinas, Sao Paulo, Brazil; #Department of Neurology, Xinopio Epilepsy Center, Kuopio University Hospital, Kuopio, Findinad: "Department of Neurology, 73th University School of Medicine, 7sla New Howen Hospital, New Haven, Connection; U.S.A.; ††Comprehensive Epilepsy Center, New York University Langone Medical Center, New York, New York, U.S.A.; ††Comprehensive Epilepsy Center, New York University Langone Medical Center, New York, West, New York, U.S.A.; ††Comprehensive Epilepsy Center, New York University Langone Medical Center, New York, West, New York, U.S.A.; ††Clinical Pharmacology Unit, Institute of Neurology, (RCCS C. Mondino) Foundation, University of Pvias, Pvias, Italy; and

§§Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden

Seizure type or epilepsy syndrome	Class I studies	Class II studies	Class III studies	Level of efficacy and effectiveness evidence (in alphabetical order)
Adults with partial-onset seizures	4	I	34	Level A: CBZ, LEV, PHT, ZNS Level B: VPA Level C: GBP, LTG, OXC, PB, TPM, VGB Level D: CZP, PRM
Children with partial-onset seizures	1	0	19	Level A: OXC Level B: None Level C: CBZ, PB, PHT, TPM, VPA, VGB Level D: CLB, CZP, LTG, ZNS
Elderly adults with partial-onset seizures	1	I	3	Level A: GBP, LTG Level B: None Level C: CBZ Level D: TPM. VPA
Adults with generalized onset tonic-clonic seizures	0	0	27	Level A: None Level B: None Level C: CBZ, LTG, OXC, PB, PHT, TPM, VP, Level D: GBP, LEV, VGB

2	5

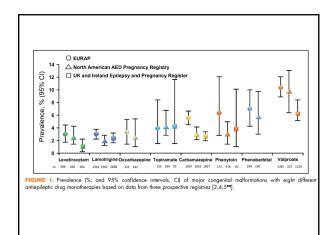
AEDs in the elderly					
Study	Type of epilepsy	Discontinuation rates	Efficacy		
KOMET (Pohlmann- Eden, 2016)	> 60 yo	LEV <vpa<cbz< td=""><td>similar</td></vpa<cbz<>	similar		
Rowan, 2005	New onset epilepsy >60 yo VA population	LTG <gbp<cbz< td=""><td>similar</td></gbp<cbz<>	similar		
Werhahn, 2015 (RCT)	New onset epilepsy >60 yo	LEV <ltg<cbz< td=""><td>similar</td></ltg<cbz<>	similar		

USING AEDS IN PATIENTS WITH OTHER MORBIDITIES

Matching AEDs with other comorbidities Avoid/ caution VPA, TPM Migraine Mood lability/ bipolar -LTG, CBZ, OXC, disorder PHT, VPA Pain CBZ, PGB, GBP FLB, LEV, LTG, TGB BZD, GBP, PGB Anxiety Barbiturates, LEV, PGB, LTG TGB, TPM, VGB, ZNS Depression Enzyme inducing AEDs On warfarin On OCP Enzyme inducing AEDs HLA 1502 +ve CBZ Sulfa allergy ZNS Perucca P & MulaM. Epilepsy Behav 2013;26:440-9

Drug interaction with OCPs

- AEDs that cause induction of CYP 3A4 increase metabolism of oral contraceptives resulting in failure of contraceptives.
- Potent enzyme inducing AEDs:
 - phenytoin, carbamazepine, primidone, phenobarbital.
- Less-potent enzyme inducing AEDs:
 - oxcarbazepine, lamotriginetopiramate >200 mg.


USING AEDS IN WOMEN WITH EPILEPSY

Special issues in women with epilepsy

- · Side effects of antiepileptic medications
 - Cosmetic side effects
 - Weight issues
 - Osteoporosis
 - Teratogenic effects
- Contraception
- Pregnancy
- Lactation
- · How to advise the patients

•			
•			
•			
•			
•			
•			
•			
•			

	-
TERATOGENIC SIDE EFFECTS OF	
AEDS	
Malformation Risks of AEDs in Pregnancy	
• No AED 2-3%	
 Monotherapy 3.7%-6% 	
Polytherapy 6.1%-15%	
	-
	1
Teratogenicity of antiepileptic drugs	-
Torbjörn Tomson ^a , Dina Battino ^b , and Emilio Perucca ^c	
Purpose of review	
We review data on the comparative teratogenicity of antiepileptic drugs (AEDs), focusing on major congenital malformations (MCMs), intrauterine growth restriction, impaired cognitive development, and	
behavioral adverse effects following prenatal exposure. Recent findings	
Prospective registries and meta-analyses have better defined the risk of MCMs in offspring exposed to individual AEDs at different dose levels. Valproate is the drug with the highest risk, whereas prevalence of	
MCMs is lowest with lamotrigine, levelriacetam, and oxacrbazepine. For valproate, phenobarbital, phenytoin, carbamazepine, and lamotrigine, the risk of MCMs is dose-dependent. Prenatal exposure to valproate has also been confirmed to cause an increased risk of cognitive impairments and autistic traits. In	
a population-based study, the risk of AED-induced autistic traits was attenuated by periconceptional folate supplementation.	
Summary The risk of otherse feel effects differs in relation to the type of AED and for some AEDs also the daily dose. Although for MCNAs the risk is primarily associated with the first trinester of gestation, influences on cognitive and behavioral development could extend throughout presponency. Available information now	
dose. Although for MCMs the risk is primarily associated with the first trimester of gestation, influences on cognitive and behavioral development could extend throughout pregnancy. Available information now	
permits a more rational AED selection in women of childbearing potential, and evidence-based counseling on optimization of AED treatment before conception.	
Keywords antiepileptic drugs, behavior, cognition, congenital malformations, epilepsy, pregnancy	
Curr Opin Neurol 2019, 32:246–252	

Comparative risk of major congenital malformations with eight different antiepleptic drugs: a prospective cohort study of the EURAP registry Indigen human. Considerative femile between place of the Comparative residence of the Comparative residenc

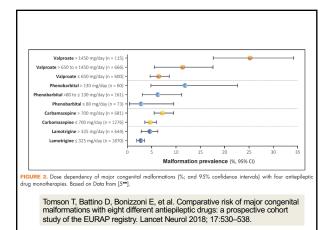


FIGURE 3. Risk of mojor congenital malformations (adds ratios with 95% confidence intervals) with different antiepile drug treatments compared with lamotrigine 325 mg/day or less. CBZ, carbamazspine; IEV, leveltracetom; ITG, lamotrigine; OXC, oxorbazspine; PB, phenobarbital; PHT, phenytoin; Ref, reference; IPM, topiramate; VPA, valproate. Based on Data from [5**].

Tomson T, Battino D, Bonizzoni E, et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. Lancet Neurol 2018; 17:530–538.

Are there specific MCMs associated with specific AEDs?

AEDs	MCMs	Evidences
PHT	Cleft palate	1 Class II study
CBZ	Posterior cleft palate	1 Class II study
VPA	Neural tube defects, facial cleft	1 Class I study
PB	Cardiac malformations	2 Class III studies

Risks of 23 specific malformations associated with prenatal exposure to 10 antiepileptic drugs

Pierre-Olivier Blotière, MSc, Fanny Raguideau, PharmD, Alain Welli, MD, Elisabeth Elefant, MD, Isabelle Perthus, MD, Véronique Goulet, MD, PhD, Florence Rouget, MD, Mahmoud Zureik, MD, PhD, Joel Coste, MD, PhD, and Rosemary Dray-Spira, MD, PhD Neurology® 2019;93:e167-e180. doi:10.1212/WNL.000000000007696

- The cohort included 1,886,825 pregnancies, 2,997 exposed to lamotrigine, 1,671 to pregabalin, 980 to clonazepam, 913 to valproic acid, 579 to levetiracetam, 517 to topiramate,512 to carbamazepine, 365 to gabapentin, 139 to oxcarbazepine, and 80 to phenobarbital
- and au to pnenoparoital

 Exposure to valproic acid was associated with 8 specific types of MCMs (e.g., spina bifida, OR 19.4, 95% CI 8.6–43.5), and exposure to topiramate was associated with an increased risk of cleft lip (6.8, 95% CI 1.4–20.0)

 No significant association for lamotrigine, levetiracetam, carbamazepine,
- oxcarbazepine, and gabapentin

OR (95% C1) 0.0 (0.0-30.4) 2.8 (0.3-10.0) 3.9 (0.5-14.3) 42.0 (1.1-239.6) 0.0 (0.0-89.4) 0.0 (0.0-16.3) 11.7 (0.3-66.2) 1.6 (0.0-9.2)	1 (3.26) 4 (13.33) 5 (16.67) 0 (0.00) 2 (6.67) 1 (3.33) 1 (3.33) 0 (0.00)	9.9 (0.3-56.0) 5.4 (1.5-14.0) 9.6 (3.1-22.7) 0.0 (0.0-124.0) 57.8 (6.9-213.0) 5.3 (0.1-22.7) 11.4 (0.3-64.4) 0.0 (0.0-5.6)	n (%) 5 (16.45) 3 (10.34) 8 (27.59) 1 (3.45) 0 (0.00) 2 (6.90) 1 (3.45) 7 (64.22)	OR (95% CI) 50.9 (16.4-120.8 4.2 (0.9-12.3) 16.1 (6.9-32.2) 42.3 (1.1-241.2) 0.0 (0.0-90.0) 11.0 (1.3-40.0) 11.8 (0.3-66.7) 14.2 (5.5-30.3)
2.8 (0.3-10.0) 3.9 (0.5-14.3) 42.0 (1.1-239.6) 0.0 (0.0-89.4) 0.0 (0.0-16.3) 11.7 (0.3-66.2) 1.6 (0.0-9.2)	4 (13.33) 5 (16.67) 0 (0.00) 2 (6.67) 1 (3.33) 1 (3.33)	5.4 (1.5-14.0) 9.6 (3.1-22.7) 0.0 (0.0-124.0) 57.8 (6.9-213.0) 5.3 (0.1-29.7) 11.4 (0.3-64.4)	3 (10.34) 8 (27.59) 1 (3.45) 0 (0.00) 2 (6.90) 1 (3.45)	4.2 (0.9-12.3) 16.1 (6.9-32.2) 42.3 (1.1-241.2) 0.0 (0.0-90.0) 11.0 (1.3-40.0) 11.8 (0.3-66.7)
2.8 (0.3-10.0) 3.9 (0.5-14.3) 42.0 (1.1-239.6) 0.0 (0.0-89.4) 0.0 (0.0-16.3) 11.7 (0.3-66.2) 1.6 (0.0-9.2)	4 (13.33) 5 (16.67) 0 (0.00) 2 (6.67) 1 (3.33) 1 (3.33)	5.4 (1.5-14.0) 9.6 (3.1-22.7) 0.0 (0.0-124.0) 57.8 (6.9-213.0) 5.3 (0.1-29.7) 11.4 (0.3-64.4)	3 (10.34) 8 (27.59) 1 (3.45) 0 (0.00) 2 (6.90) 1 (3.45)	4.2 (0.9-12.3) 16.1 (6.9-32.2) 42.3 (1.1-241.2) 0.0 (0.0-90.0) 11.0 (1.3-40.0) 11.8 (0.3-66.7)
3.9 (0.5-14.3) 42.0 (1.1-239.6) 0.0 (0.0-89.4) 0.0 (0.0-16.3) 11.7 (0.3-66.2) 1.6 (0.0-9.2)	5 (16.67) 0 (0.00) 2 (6.67) 1 (3.33) 1 (3.33)	9.6 (3.1-22.7) 0.0 (0.0-124.0) 57.8 (6.9-213.0) 5.3 (0.1-29.7) 11.4 (0.3-64.4)	8 (27.59) 1 (3.45) 0 (0.00) 2 (6.90) 1 (3.45)	16.1 (6.9-32.2) 42.3 (1.1-241.2) 0.0 (0.0-90.0) 11.0 (1.3-40.0) 11.8 (0.3-66.7)
42.0 (1.1-239.6) 0.0 (0.0-89.4) 0.0 (0.0-16.3) 11.7 (0.3-66.2) 1.6 (0.0-9.2)	0 (0.00) 2 (6.67) 1 (3.33) 1 (3.33)	0.0 (0.0-124.0) 57.8 (6.9-213.0) 5.3 (0.1-29.7) 11.4 (0.3-64.4)	1 (3.45) 0 (0.00) 2 (6.90) 1 (3.45)	42.3 (1.1-241.2) 0.0 (0.0-90.0) 11.0 (1.3-40.0) 11.8 (0.3-66.7)
0.0 (0.0-89.4) 0.0 (0.0-16.3) 11.7 (0.3-66.2) 1.6 (0.0-9.2)	2 (6.67) 1 (3.33) 1 (3.33)	57.8 (6.9-213.0) 5.3 (0.1-29.7) 11.4 (0.3-64.4)	0 (0.00) 2 (6.90) 1 (3.45)	0.0 (0.0-90.0) 11.0 (1.3-40.0) 11.8 (0.3-66.7)
0.0 (0.0-16.3) 11.7 (0.3-66.2) 1.6 (0.0-9.2)	1 (3.33)	5.3 (0.1-29.7) 11.4 (0.3-64.4)	2 (6.90)	11.0 (1.3-40.0)
11.7 (0.3-66.2) 1.6 (0.0-9.2)	1 (3.33)	11.4 (0.3-64.4)	1 (3.45)	11.8 (0.3-66.7)
1.6 (0.0-9.2)				
	0 (0.00)	0.0 (0.0-5.6)	7 (64.22)	14.2 (5.5-30.3)
9.8 (0.2-55.5)	0 (0.00)	0.0 (0.0-31.7)	2 (6.47)	20.3 (2.4-74.5)
15.4 (0.4-93.6)	1 (40.00)	16.6 (0.4-102.1)	0 (0.00)	0.0 (0.0-48.8)
4.4 (0.1-24.6)	1 (1.83)	4.4 (0.1-24.5)	2 (3.57)	8.5 (1.0-31.1)
6.8 (0.2-38.7)	0 (0.00)	0.0 (0.0-20.9)	2 (11.63)	13.4 (1.6-49.0)
	4.4 (0.1–24.6) 6.8 (0.2–38.7) nobarbital ≤3.000 m	4.4 (0.1-24.6) 1 (1.83) 6.8 (0.2-38.7) 0 (0.00) hobarbital ≤3.000 mg (50 mg/d), pr	4.4 (0.1-24.6) 1 (1.83) 4.4 (0.1-24.5) 6.8 (0.2-38.7) 0 (0.00) 0.0 (0.0-20.9) which to the state of the state	4.4 (0.1-24.5) 1 (1.83) 4.4 (0.1-24.5) 2 (3.57)

Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child (Review)

Bromley R, Weston J, Adab N, Greenhalgh J, Sanniti A, McKay AJ, Tudur Smith C, Marson AG

Bromley R, et al. Cochrane Database of Systematic Reviews 2014, Issue 10. Art. No.: CD010236.

Characteristics of the studies

The review included 28 studies. Participants were women with epilepsy taking commonly used AEDs who were compared to either women without epilepsy or women who had epilepsy but who were not treated with AEDs. Comparisons were also made between children exposed to different AEDs in the womb. The evidence presented in this review was up to date to May 2014.

Results

- The evidence for younger children exposed to carbamazepine (CBZ) in the womb was conflicting, however this was likely to be due to differences in the way that these studies were carried out. In older children those exposed to CBZ were not poorer in their IQ than children who were not exposed. No link was found between the dose of CBZ and child ability.
- Both younger and older children exposed in the womb to sodium valproate (VPA) showed poorer cognitive development in comparison to children not exposed and children exposed to other AEDs. A link between dose of VPA and child ability was found in six studies; with higher doses of the drug linked to a lower IQ ability in the child. The level of this difference was likely to increase the risk of poorer educational levels.
- Children exposed to CBZ in the womb did not differ in their skills from children exposed to lamotrigine (LTG), however very few studies investigated this. There were also no differences between children exposed to phenytoin (PHT) in the womb and those exposed to CBZ or those exposed to LTG.
- There were very limited data on newer medications such as LTG, levetiracetam or topiramate.

Bromley R, et al. Cochrane Database of Systematic Reviews 2014, Issue 10. Art. No.: CD010236.

_	

	1
Conclusions	
This review found that children exposed to VPA in the womb were at an increased risk of poorer neurodevelopment scores both in	
infancy and when school aged. The majority of evidence indicates that exposure in the womb to CBZ is not associated with poorer	
neurodevelopment. Data were not available for all AEDs that are in use or for all aspects of child neurodevelopment. This means decision making for women and their doctors is difficult. Further research is needed so that women and their doctors can make decisions	
based on research evidence about which medication is right for them in their childbearing years.	
Bromley R, et al. Cochrane Database of Systematic Reviews 2014, Issue 10. Art. No.: CD010236.	
	1
	-
WHAT WE SHOULD DO?	
WHAT WE SHOULD BO!	
	•
	1
Epilepsy and pregnancy	
• ควรมีการให้ความรู้เกี่ยวกับโอกาสและความเสี่ยงที่จะ	
1199011 199111 9 10 911 10 11 11 11 11 11 11 11 11 11 11 11 1	
เกิดความผิดปกติของเด็กในครรภ์สำหรับหญิงวัยเจริญ	
พันธุ์ที่ต้องรับประทานยากันชัก เพื่อผู้ป่วยจะได้ สามารถวางแผนและตัดสินใจเรื่องการตั้งครรภ์ล่วงหน้า	
ข สามารถวางแผงและตัดสิ่งใจเรื่องการตั้งครรภ์ล่วงจะง้า	
ได้	
1	

Epilepsy and pregnancy

- ควรวางแผนล่วงหน้าก่อนการตั้งครรภ์เนื่องจาก
 - -ในกรณีที่มารดาไม่มีอาการชักนานเกิน 2 ปีอาจพิจารณา หยุดยากันชักได้
 - ในกรณีที่คุมอาการชักได้ดี และมารดารับประทานยากันชัก มากกว่า 1 ชนิดอาจพิจารณาลดขนาดยาหรือลดยาเหลือ 1 ชนิด เพื่อลดโอกาสการเกิดผลข้างเคียงต่อทารกในครรภ์

Epilepsy	and	pregnancy	,
-piiopoy	arra	programa	

- ควรวางแผนล่วงหน้าก่อนการตั้งครรภ์เนื่องจาก
 - ควรหลีกเลี่ยงการใช้ยากันชักที่มี teratogenic effect สูง เช่น sodium valproate ในช่วงการตั้งครรภ์หากสามารถ ทำได้

Epilepsy and pregnancy

- ในขณะที่ผู้ป่วยตั้งครรภ์ไม่ควรปรับหรือเปลี่ยนยากันชัก เนื่องจากโอกาสที่จะเกิดอันตรายต่อมารดาและทารกใน ครรภ์หากผู้ป่วยเกิดการชักมี<u>มากกว่าโ</u>อกาสการเกิดผล ข้างเคียงต่อทารกในครรภ์
- ควรมีการตรวจคัดกรองความผิดปกติของเด็กในครรภ์ มารดา โดยเฉพาะ malformation ที่พบได้บ่อยและ รุนแรง เช่น neural tube defect

Epilepsy and pregnancy

- ในผู้หญิงวัยเจริญพันธ์ควรได้รับ folic acid supplementation ในขนาด 4-5 mg/d ซึ่งจาก การศึกษาที่ผ่านมา อาจช่วยลดโอกาสการเกิด neural tube defects ได้บ้าง
- ในผู้ป่วยที่ได้รับ enzyme inducing AEDs เด็กแรก คลอดควรได้รับ vitamin K supplement หลัง คลอดเช่นเดียวกับเด็กอื่นๆ

Epilepsy and lactation

- ยากันซักส่วนมากไม่ได้ excrete ออกมาในน้ำนมมาก นัก จึงมีผลน้อยต่อเด็ก ยกเว้น phenobabital, levetiracetam, gabapentin,lamotrigine, and topiramate
- Phenobarbital อาจจะมีผลทำให้เด็กง่วงซึมได้

Special situations

- · Hepatic and renal dysfunction
- Other medical conditions
 - Cardiac conditions
 - HIV infected patients
 - Infectious diseases
 - Transplant patients
 - Patients with brain tumor
- Elderly
- Psychiatric patients
- Women

•		
•		
		_
		_
		_
		_
•		_
•		_
•		_
-		
-		
-		

Questions	
	_