



# Children Are Not Just Small Adults Choosing AEDs in Children

Natrujee Wiwattanadittakun, MD

10 014

Neurology division, Department of Pediatrics, Chiang Mai University Hospital, Chiang Mai University

20th July, 2018

## **Treatment Goals**

- Seizure freedom
- No adverse side effects
- \* Monotherapy
- Easy regimen to follow

Wyllie E. The Treatment of Epilepsy: Principles and Practice. 6<sup>th</sup> ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2015.

#### **AEDs Selection**



## **Special Consideration in Children**

- Decision to treat —> Accurate Diagnosis !
- \* Febrile seizure ?
- Think Epilepsy Syndrome
- Contraindication/safety profile
- Etiology: presumptive metabolic disease, genetic
- Specific seizure type

### First unprovoked seizure

- Pediatric data
  - 70% of recurrences were within 6 months of the first seizure,
    77% by 1 year, and 90% by 2 years
  - Recurrent rates were higher in children with abnormal neurological examination, focal spikes on EEG, and complex partial seizures
  - Recommendation: No treatment until second seizure; > 50%
    will never have another seizure again

Camfield PR, Neurology 1985;35:1657-1660.

# Think epilepsy syndrome Not just seizure type !

- Some drugs have superior efficacy and others drugs worsen seizure control
- If you know the epilepsy syndrome you can
  - Predict long-term prognosis of childhood onset epilepsy
    - \* Pharmacoresponsive
    - Remits or require life-long therapy

*Epilepsia*, 54(3):551–563, 2013 doi: 10.1111/epi.12074

#### **SPECIAL REPORT**

#### Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes

\*Tracy Glauser, †Elinor Ben-Menachem, ‡Blaise Bourgeois, §Avital Cnaan, ¶Carlos Guerreiro, #Reetta Kälviäinen, \*\*Richard Mattson, ††Jacqueline A. French, ‡‡Emilio Perucca, §§Torbjorn Tomson for the ILAE Subcommission on AED Guidelines

\*Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A.; †Institution for Clinical Neuroscience, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; ‡Department of Neurology, The Children's Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A.; §Division of Biostatistics and Study Methodology, Center for Translational Science, Children's National Medical Center, Washington, District of Columbia, U.S.A.; ¶Department of Neurology, University of Campinas (UNICAMP), Hospital das Clínicas, Campinas, Sao Paulo, Brazil; #Department of Neurology, Kuopio Epilepsy Center, Kuopio University Hospital, Kuopio, Finland; \*\*Department of Neurology, Yale University School of Medicine, Yale New Haven Hospital, New Haven, Connecticut, U.S.A.; ††Comprehensive Epilepsy Center, New York University Langone Medical Center, New York, New York, U.S.A.; ‡‡Clinical Pharmacology Unit, Institute of Neurology, IRCCS C. Mondino Foundation, University of Pavia, Pavia, Italy; and §§Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden

# **Efficacy Profile**

| Seizure Type                               | Class I<br>studies | Class<br>II<br>studies | Class<br>III<br>studies | Level of efficacy<br>for initial monotherapy                                                                |
|--------------------------------------------|--------------------|------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------|
| Adults with<br>partial-onset<br>seizure    | 4                  | 1                      | 34                      | Level A: CBZ, LEV, PHT, ZNS<br>Level B: VPA<br>Level C: GBP, LTG, OXC, PB,<br>TPM, VGB<br>Level D: CZP, PRM |
| Children with<br>partial-onset<br>seizures | 1                  | 0                      | 19                      | Level A: OXC<br>Level B: None<br>Level C: CBZ, PB, PHT, TPM,<br>VPA, VGB<br>Level D: CLB, CZP, LTG, ZNS     |

Glauser T et al. Update ILAE evidence. Epilepsia 2013.54;3:551–563.

#### **Efficacy Profile**

#### Seizure Type

Class I Class II Class III studies studies studies Level of efficacy for initial monotherapy

Adults with generalized onset tonic-clonic seizures

Children with generalized onset tonic-clonic seizures

| et<br>res | 0 | 0 | 27 | Level D: None<br>Level C: CBZ, LTG, OXC, PB,<br>PHT, TPM, VPA<br>Level D: GBP. LEV, VGB |
|-----------|---|---|----|-----------------------------------------------------------------------------------------|
| et<br>res | 0 | 0 | 14 | Level A: None<br>Level B: None<br>Level C: CBZ, PB, PHT, TPM,<br>VPA<br>Level D: OXC    |

Glauser T et al. Update ILAE evidence. Epilepsia 2013.54;3:551–563.

Level A: None

T and D. Marsa

#### **Children with Absence Seizure**

- Level A: Ethosuximide, valproate
- Level C: Lamotrigine (1 Class I, 7 Class III studies)
- Others: clobazam, clonazepam, leveliracetam, topiramate, zonisamide, gabapentin
- \* Consider: Teenage girl, side effect

# Benign Epilepsy with Centrotemporal spikes (BECTs)

- Level C: carbamazepine, valproate
- Level D: Gabapentin, levetiracetam, oxcarbamazepine, STM (3 Class III studies)
- Most of them may not need AEDs (infrequent, nocturnal seizures, onset close to the age of remission)
- Carbamazepine may aggravate new type of seizure/continuous spike-waves during slow wave sleep

Glauser T et al. Update ILAE evidence. Epilepsia 2013.54;3:551–563.

#### Juvenile Myoclonic Epilepsy (JME)

Level D: Topiramate, valproate (1 Class III studies)

 Others: levetiracetam, zonisamide, lamotrigine, clobazam, clonazepam

# Efficacy

- Some drugs worsen seizure control
  - \* Carbamazepine: absence seizure
  - \* Phenytoin may worsen myoclonic seizure

#### **Mechanism Of Action**



Felbamate → ↓ Na\* channels, ↑GABA, receptors, ↓NMDA receptors

#### Dravet syndrome

- Severe myoclonic epilepsy of infancy
- Normal infant
- Seizure one less than 1 year old
- Febrile status epilepticus: GTCs, hemiclonic
- \* Later afebrile seizure; myoclonic, tonic, atypical absence
- Developmental regression/plateu

Epileptic syndrome 5th edition. Chapter 11. 125-156.

#### Dravet syndrome

- \* 80% due to SCN1A mutation; sodium channel called NaV1.1
- EEG: First year normal, 2-5 years: generalized spikes/ polyspike, multifocal
- Drug of choices: valproate, topiramate, clobazam
- Avoid: Sodium channel blocker \*\*\*\* phenytoin, carbamazepine, lamotrigine, vigibatrin

Epileptic syndrome/Glauser T et al. Update ILAE evidence. Epilepsia 2013.54;3 :551–563.

#### **Adverse Effects**

- All antiepileptic drugs; drowsiness, dizziness, and rash;
  drugs act on the GABA system tend to be more sedating
- Cognitive disturbance: phenobarbital, topiramate, carbamazepine
- Phenytoin-induced gingival hyperplasia increased in children and poorer oral hygiene

#### **Serious Adverse Effects**

- Valproate-induced fatal hepatotoxicity
  - \* Young age
    - \* Age 21-40 years 1:31000
    - Age < 2 years 1:600 \*\*\*\*</p>
  - \* Polytherapy

Bryant and Fritz. Neurology 1996;46;465-469.

#### **Pharmacokinetic Fun Facts**

#### \* Absorption

- Phenytoin: Age-dependent: Less than 3 months old poor absorption/unpredictable and may not reliable until 5 years old
- Distribution
  - Phenytoin: V<sub>d</sub> declined with age

Matsukura M, Dev Phamaco There 1984;7;160-8.

## **Pharmacokinetic Fun Facts**



| Age          | Maintenance<br>(mg/kg/day) |  |  |
|--------------|----------------------------|--|--|
| Neonate      | 4-6                        |  |  |
| 0.25-3 years | 6-10                       |  |  |
| 4-6 years    | 5-7                        |  |  |
| 7-9 years    | 4-7                        |  |  |
| > 10 years   | 4-6                        |  |  |

Swainman's Pediatr Neurol edition 5th . Chapter 59:811-835

## **Pharmacokinetic Fun Facts**

- Elimination
  - Renal elimination of drugs and metabolite lower than adult until 6 months old
- Metabolism/drug clearance faster than adult; required more frequent dosage
  - Phenytoin : half life 5-14 hours in children ; require two divided dose
  - Carbamazepine : : half life 5-27 hours in children require three divided dose

Bryant and Fritz. Neurology 1996;46;465-469. Fenichel's Clin Pediatric Neurology 2013; 36-42.

# Drug Disposition at Difference Age

|                           | Neonate | Infants,<br>Children | Adolescent                 |
|---------------------------|---------|----------------------|----------------------------|
| Absorption                | ↓       | 1                    | Α                          |
| Plasma protein<br>binding | ↓       | ↓                    | $\checkmark \rightarrow A$ |
| Metabolism                | ↓       | 1                    | $\checkmark \rightarrow A$ |
| Excretion                 | ↓       | Α                    | Α                          |
|                           |         |                      | A = Adult level            |

Swainman's Pediatr Neurol edition 5th . Chapter 59 :811-835

#### Ease of Use

- \* IV VS oral: PHT, PB, VPA, LEV, LCM
- Quick-up titration: phenytoin, phenobarbital, valproate, levetiracetam, zonisamide, lacosamide
  - \* Not: CBZ, lamotrigine
- \* Tablet/solution/sprinkles

# Tablet

- Crush oral solids form/disguise the taste with a small volume of flavoured drink or food
  - Be aware some drugs lose their properties
- Extemporaneous preparation (small dose)
  - Are you sure about stability, amount of the drug and bioavailability?

## Don't forget

- Caregivers should be thoroughly educated
  - Drug administration technique
  - Who/how/how many times
  - Adverse effect/drug allergy